PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 4 |

Tytuł artykułu

ERK 1/2 and PI-3 kinase pathways as a potential mechanism of ghrelin action on cell proliferation and apoptosis in the porcine ovarian follicular cells

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Recently, we reported the stimulatory effect of ghrelin on ovarian cell proliferation in parallel with the inhibitory action of ghrelin on cell apoptosis. The aim of the presented data propose local activation of extracellular signal-regulated protein kinase 1 and 2 (ERK 1/2) and phosphoinositide-3 (PI-3) kinase pathways as a mechanism of ghrelin effect in the porcine ovary. To test this hypothesis, action of ghrelin on levels of ERK 1/2 with PI-3 kinase activity and protein expression using ELISA and western blot analysis, respectively, was examined. Additionally, to determine which pathways (ERK 1/2 or PI-3 kinase) are the potential signals of ghrelin-mediated cell proliferation and apoptosis in ovarian cells, we used PD098059 (50 µM) and wortmannin (200 µM), well-known inhibitors of these kinases. Treatment of ovarian coculture cells with ghrelin (100, 250, 500 and 1000 pg/ml) showed stimulation of phospho-ERK 1/2 levels and PI-3 kinase activity, with the maximum effect observed after 15 min of cell incubation. Additionally, western blot analysis indicated that ghrelin increased expression of both kinases. Moreover, ghrelin used in combination with PD098059 or wortmannin significantly decreased cell proliferation, which was measured by the Alamar Blue assay and increased apoptosis, which was measured by caspase - 3 activity and DNA fragmentation. In conclusion, these results suggest that the ERK 1/2 and PI-3 kinase pathways may be potential signals of ghrelin mediate the cell proliferation and apoptosis of ovary cells.

Wydawca

-

Rocznik

Tom

61

Numer

4

Opis fizyczny

p.451-458,fig.,ref.

Twórcy

  • Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland

Bibliografia

  • Fernandez-Fernandez R, Martini AC, Navarro V, et al. Novel signals for the integration of energy balance and reproduction. Mol Cell Endocrinol 2006; 254-255: 127-132.
  • Tena-Sempere M. Exploring the role of ghrelin as novel regulator of gonadal function. Growth Horm IGF Res 2005; 15(2): 83-88.
  • Kojima M, Hosada Y, Date M, Nakazato H, Matsuo H, Kangawa K. Ghrelin a growth hormone releasing acylated peptide from stomach. Nature 1999; 402: 656-660.
  • Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996; 273: 974-977.
  • Gnanapavan S, Kola B, Bustin S, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab 2002; 87: 2988-2991.
  • Gaytan F, Barreiro ML, Chopin LK, et al. Immunolocalization of ghrelin and its functional receptor, the type 1a growth hormone secretagogue receptor, in the cyclic human ovary. J Clin Endocrinol Metab 2003; 88: 879-887.
  • Rak A, Gregoraszczuk EL. Ghrelin levels in prepubertal pig ovarian follicles. Acta Vet Hung 2009; 57: 109-113.
  • Rak A, Gregoraszczuk EL. Modulatory effect of ghrelin in prepubertal porcine ovarian follicles. J Physiol Pharmacol 2008; 59: 781-793.
  • Rak A, Szczepankiewicz D, Gregoraszczuk EL. Expression of ghrelin receptor, GHSR-1a, and its functional role in the porcine ovarian follicles. Growth Horm IGF Res 2009; 19: 68-76.
  • Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997; 275(5300): 628-630.
  • Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 1997; 17: 1595-1606.
  • Makarevich A, Sirotkin A, Chrenek P, Bulla J, Hetenyi L. The role of IGF-I, cAMP/protein kinase A and MAP-kinase in the control of steroid secretion, cyclic nucleotide production, granulosa cell proliferation and preimplantation embryo development in rabbits. J Steroid Biochem Mol Biol 2000; 73: 123-133.
  • Makarevich AV, Sirotkin AV, Franek J, Kwon HB, Bulla J. The role of oxytocin, protein kinase A, and ERK-related MAP-kinase in the control of porcine ovarian follicle functions. Exp Clin Endocrinol Diabetes 2004; 112: 108-114.
  • van Opstal A, Boonstra J. Inhibitors of phosphatidylinositol 3-kinase activity prevent cell cycle progression and induce apoptosis at the M/G1 transition in CHO cells. Cell Mol Life Sci 2006; 63: 220-228.
  • Choi K, Auersperg N, Leung P. Mitogen-activated protein kinases in normal and (pre)neoplastic ovarian surface epithelium. Reprod Biol Endocrinol 2003; 1: 71.
  • Granata R, Settanni F, Biancone L, et al. Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic beta-cells and human islets: involvement of 3',5'-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-Kinase/Akt signaling. Endocrinology 2007; 148: 512-529.
  • Baldanzi G, Filigheddu N, Cutrupi S, et al. Ghrelin and desacyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI3-kinase/AKT. J Cell Biol 2003; 159: 29-37.
  • Kim S, Her S, Park SJ, et al. Ghrelin stimulates proliferation and differentiation and inhibits apoptosis in osteoblastic MC3T3-E1 cells. Bone 2005; 37: 359-369.
  • Nanzer A, Khalaf S, Mozid A, et al. Ghrelin exerts a proliferative effect on a rat pituitary somatotroph cell line via the mitogen-activated protein kinase pathway. Eur J Endocrinol 2004; 151: 233-240.
  • Andreis PG, Malendowicz L, Trejter M, et al. Ghrelin and growth hormone secretagogue receptor are expressed in the rat adrenal cortex: evidence that ghrelin stimulates the growth, but not the secretory activity of adrenal cells. FEBS Lett 2003; 536: 173-179.
  • Stoklosowa S, Bahr J, Gregoraszczuk E. Some morphological and functional characteristics of cells of the porcine theca interna in tissue culture. Biol Reprod 1978; 19: 712-719.
  • Stoklosowa S, Gregoraszczuk E, Channing CP. Estrogen and progesterone secretion by isolated cultured porcine theca and granulose cells. Biol Reprod 1982; 26: 943-952.
  • Alessi D, Cuenda A, Cohen P, Dudley D, Saltiel R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase in vitro and in vivo. J Biol Chem 1995; 270: 27489-27494.
  • Dudley D, Pang L, Decker S, Bridges A, Saltiel A. A synthetic inhibitor of mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 1995; 92: 7686-7689.
  • Boulton S, Kyle S, Yalçintepe L, Durkacz B. Wortmannin is a potent inhibitor of DNA double strand break but not single strand break repair in Chinese hamster ovary cells. Carcinogenesis 1996; 17: 2285-2290.
  • Holleran J, Fourcade J, Egorin MJ, et al. in vitro metabolism of the phosphatidylinositol 3-kinase inhibitor, wortmannin, by carbonyl reductase. Drug Metab Dispos 2004; 32: 490-496.
  • Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254.
  • Nicholson D, Ali A, Thornberry N, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 376: 37-43.
  • Zhang Y, Ying B, Shi L, et al. Ghrelin inhibit cell apoptosis in pancreatic beta cell line HIT-T15 via mitogen-activated protein kinase/phosphoinositide 3-kinase pathways. Toxicology 2007; 31: 194-202.
  • Kim M, Yoon C, Jang P, et al. The mitogenic and antiapoptotic actions of ghrelin in 3T3-L1 adipocytes. Mol Endocrinol 2004; 18: 2291-2301.
  • Delhanty P, van der Eerden B, van der Velde M, et al. Ghrelin and unacylated ghrelin stimulate human osteoblast growth via mitogen-activated protein kinase (MAPK)/phosphoinositide 3-kinase (PI3K) pathways in the absence of GHS-R1a. J Endocrinol 2006; 188: 37-47.
  • Ahluwalia A, Li A, Cheng G, Deng X, Tarnawski AS. Reduced ghrelin in endothelial cells plays important mechanistic role in aging-related impairment of angiogenesis. J Physiol Pharmacol 2009; 60(2): 29-34.
  • Popelkova M, Sirotkin AV, Bezakova A, et al. Effect of IGF-I, leptin, ghrelin and MAPK-ERK on the nuclear maturation of bovine oocytes. Bulletin Vet Res Inst Pulawy 2006; 50: 179-181.
  • Sirotkin A, Grossmann R. The role of ghrelin and some intracellular mechanisms in controlling the secretory activity of chicken ovarian cells. Comp Biochem Physiol A Mol Integr Physiol 2007; 147(1): 239-246.
  • Mousseaux D, Le Gallic L, Ryan J, et al. Regulation of ERK1/2 activity by ghrelin-activated growth hormone secretagogue receptor 1A involves a PLC/PKC epsilon pathway. Br J Pharmacol 2006; 148: 350-365.
  • Chung H, Kim E, Lee DH, et al. Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation. Endocrinology 2007; 148: 148-159.
  • Ceranowicz P, Warzecha Z, Dembinski A, et al. Treatment with ghrelin accelerates the healing of acetic acid-induced gastric and duodenal ulcers in rats. J Physiol Pharmacol 2009; 60: 87-98.
  • Graves L, Guy H, Kozlowski P, et al. Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature 2000; 403: 328-332.
  • Downward J. PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 2004; 15: 177-182.
  • Fry M. Structure, regulation and function of phosphoinositide 3-kinases. Biochem Biophys Acta 1994; 1226: 237-268.
  • Camina J. Cell biology of the ghrelin receptor. J Neuroendocrinol 2006; 18: 65-76.
  • Cao JM, Ong H, Chen C. Effects of ghrelin and synthetic GH secretagogues on the cardiovascular system. Trends Endocrinol Metab 2006; 17: 13-18.
  • Van der Lely A, Tschop M, Heiman M, Ghigo E. Biological, physiological, pathophysiological and pharmacological aspects of ghrelin. Endocrinol Rev 2004; 25: 426-457.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5a5d18fd-54bb-43dd-ad1d-fec0c8ef2648
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.