PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 43 | 3 |

Tytuł artykułu

Squash inhibitor family of serine proteinases

Języki publikacji

EN

Abstrakty

EN
Squash inhibitors of serine proteinases form an uniform family of small proteins. They are built of 27-33 amino-acid residues and cross-linked with three disulfide bridges. The reactive site peptide bond (Pl-Pl') is between residue 5 (Lys, Arg or Leu) and 6 (always lie). High resolution X-ray structures are available for two squash inhibitors complexed with trypsin. NMR solution structures have also been determined for free inhibitors. The major structural motif is a distorted, triple-strai:ded antiparallel p-sheet. A similar folding motif has been recently found in a number of proteins, including: conotoxins from fish-hunting snails, carbo- xypeptidase inhibitor from potato, kalata B1 polypeptide, and in some growth factors (e.g. nerve growth factor, transforming growth factor P2, platelet-derived growth factor). Squash inhibitors are highly stable and rigid proteins. They inhibit a number of serine proteinases: trypsin, plasmin, kallikrein, blood clotting factors: Xa and XII*, cathepsin G. The inhibition spectrum can be much broadened if specific amino-acid substitutions are introduced, especially at residues which contact proteinase. Squash inhibitors inhibit proteinases via the standard mechanism. According to the mechanism, inhibitors are substrates which exibit at neutral pH a high fccWKm index for hydrolysis and resynthesis of the reactive site, and a low value of the hydrolysis constant.

Wydawca

-

Rocznik

Tom

43

Numer

3

Opis fizyczny

p.431-444,fig.

Twórcy

autor
  • University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
autor

Bibliografia

  • 1. Laskowski, M., Jr. & Kato, I. (1980) Protein inhi­bitors of proteinases. Annu. Rev. Biochem. 49, 593-626.
  • 2. Read, R. & James, M.N.G. (1986) Introduction to the proteinase inhibitors: X-ray crystallography; in Proteinase Inhibitors (Barrett, A.J. & Salvesen, G., eds.) pp. 301-336, Elsevier, Amsterdam.
  • 3. Bode, W. & Huber, R. (1992) Natural protein proteinases inhibitors and their interaction with proteinases. Eur.). Biochem. 204,433-451.
  • 4. I>askowski, M., Jr. (1986) Protein inhibitors of serine proteinases — mechanism and classi­fication; in Nutritional and Toxicological Signi­ficance of Enzyme Inhibitors (Friedman, M., ed.) pp. 1-17, Plenum, New York.
  • 5. Ardelt, W. & Laskowski, M., Jr. (1985) Turkey ovomucoid third domain inhibits eight different serine proteinases of varied specificity on the same... Leu18 - Glu19... reactive site. Biochemistry 24, 5313-5320.
  • 6. Polanowski, A., Wilusz, T., Nienartowicz, B., Cieslar, E., Slonimska, A. & Nowak, K. (1980) Isolation and partial amino acid sequence of the trypsin inhibitor from the seeds of Cucurbita maxima. Acta Biochim. Polon. 27, 371-382.
  • 7. Wilusz, T., Wieczorek, M., Polanowski, A., Denton, A., Cook, J. & Laskowski, M., Jr. (1983) Amino-acid sequence of two trypsin iso- inhibitors, ITD 1 and ITD III from squash seeds (Cucurbita maxima). Hoppe-Seller's Z. Physiol. Chem. 364,93-95.
  • 8. Leluk, J., Otlewski, J., Wieczorek, M., Pola­nowski, A. & Wilusz, T. (1983) Preparation and characteristics of trypsin inhibitors from the seeds of squash (Cucurbita maxima) and zucchini (Cucurbita pepo var. CiromoTitia). Acta Biochim. Polon. 30,127-138.
  • 9. Otlewski, J., Polanowski, A., Leluk, J. & Wilusz, T. (1984) Trypsin inhibitors in summer squash (Cucurbita pepo) seeds. Isolation, purification and partial characterization of three inhibitors. Acta Biochim. Polon. 31, 267-278.
  • 10. Otlewski, J. & Wilusz, T. (1985) The serine proteinases inhibitors from summer squash {Cucurbita pepo): Some structural features, sta­bility and proteolytic degradation. Acta Biochim. Polon. 32,285-293. ML Hojima, Y., Pierce, J.V. & Pisano, J.J. (1980) Plant inhibitors of serine proteinases: Hageman factor fragment, kallikreins, plasmin, thrombin, factor Xa trypsin, and chymotrypsin. Thromb. Res. 20, 163-171.
  • 12. Hojima, Y., Pierce, J.V. & Pisano, J.J. (1982) Pumpkin seed inhibitor of human factor Xlla (activated Hageman factor) and bovine trypsin. Biochemistry 21,3741-3746.
  • 13. Wieczorek, M., Otlewski, J., Cook, J., Parks, K., Leluk, J., Wilimowska-Pelc, A„ Polanowski, A., Wilusz, T. & Laskowski, M., Jr. (1985) The squash inhibitor family of serine proteinase inhibitors. Amino acid sequences and asso­ciation equilibrium constants of inhibitors from squash, summer squash, zucchini, and cucumber seeds. Biochem. Biophys. Res. Commun. 126,646-652.
  • 14. Polanowski, A., Cieslar, E., Otlewski, J., Nie- nartowicz, B., Wilimowska-Pelc, A. & Wilusz, T. (1987) Protein inhibitors of trypsin from the seeds of Cucurbitaceae plants. Acta Biochim. Polon. 34,395-406.
  • 15. Otlewski, )., Whatley, H., Polanowski, A. & Wilusz, T. (1987) Amino-acid sequences of trypsin inhibitors from watermelon (Citrullus vulgaris) and red bryony (Bryonia dioica). Biol. Chem. Hoppe-Seyler 368,1505-1507.
  • 16. Joubert, F.J. (1984) Trypsin inhibitors from Momordica repens seeds. Phytochemistry 23, 1401-1406.
  • 17. Hara, S., Makino, J. & Ikenaka, T. (1989) Amino acid sequences and disulfide bridges of serine proteinase inhibitors from bitter gourd (Momor­dica charantia Linn.) seeds. /. Biochem. (Tokyo) 105, 88-92.
  • 18. Matsuo, M., Hamato, N., Takano, R., Kamei- -Hayashi, K., Yasuda-Kamatani, Y., Nomoto, K. & Hara, S. (1992) Trypsin inhibitors from bottle gourd (lagenaria leucantha Rusby var. Depressa Makino) seeds. Purification and amino acid sequences. Biochim. Biophys. Acta 1120,187-192.
  • 19. Hakateyama, T., Hiraoka, M. & Funatsu, G. (1991) Amino acid sequence of the two smallest trypsin inhibitors from sponge gourd seeds. Agric. Biol. Chem. 10, 2641-2642.
  • 20. Hamato, N., Takano, R., Kamei-Hayashi, K. & Hara, S. (1992) Purification and characteri­zation of serine proteinase inhibitors from gourd (¡Jigenaria leucantha Rusby var. Courda Makino) seeds. Bioscience Biotechnol. Biochem. 56, 275-279.
  • 21. I luang, Q., Liu, S. & Tang, Y. (1992) Refined 1.6 resolution crystal structure of the complex formed between porcine trypsin and MCTI-A, a trypsin inhibitor of the squash family. /. Mol. Biol. 229,1022-1036.
  • 22. Favel, A., Mattras, H.f Coletti-Previero, M.A., Zwilling, R., Robinson, E.A. & Castro, B. (1989) Protease inhibitors from Ecballium elaterium seeds. Int. J. Peptide Protein Res. 33,202-208.
  • 23. ling, M.-H., Qi, H. & Chi, C. (1993) Protein, cDNA and genomic DNA sequences of the towel gourd trypsin inhibitor. J. Biol. Chem. 268, 810-814.
  • 24. Ikenaka, T. & Norioka, S. (1986) Bowman-Birk family of serine proteinases; in Proteinase Inhi­bitors (Barrett, A.J. & Salvesen, G., eds) pp. 360- -374, Elsevier, Amsterdam.
  • 25. Schechter, I. & Berger, A. (1967) On the size of the active site in proteases. Biochem. Biophys. Res. Commun. 27,157-162.
  • 26. Laskowski, M., Jr., Kato, I., Ardelt, W., Cook, J., Denton, A., Empie, M.W., Kohr, W.J., Park, S.J., Parks, K., Schatzley, B.L., Schoenberger, O.L., Tashiro, M., Vichot, G., Whatley, H.E., Wie­czorek, A. & Wieczorek, M. (1987) Ovomucoid third domains from 100 avian species. Isolation, sequence and hypervariability of enzyme- -inhibitor contact residues. Biochemistry 26, 202-221.
  • 27. Creighton, T.E. & Charles, I.G. (1987) Biosyn­thesis, processing, and evolution of bovine pancreatic trypsin inhibitor. Cold Spring Harbor Symp. Quant. Biol. 52,511-519.
  • 28. oiivera, B.M., Hillyard, D.R., Marsh, M. & Yoshikami, D. (1995) Combinatorial peptide libraries in drug design: I^essons from ve­nomous cone snails. Trends Biotechn. 13,422-430.
  • 29. Bode, W., Greyling, H.J., Hubcr, R., Otlewski, J. & Wilusz, T. (1989) The refined 2.0 A X-ray crystal structure of the complex formed between bovine p-trypsin and CM'11-I, a trypsin inhibitor from squash seeds (Cucurbita maxima). FEBS Lett. 242, 285-292.
  • 30. Holak, T.A., Gondol, D., Otlewski, J. & Wilusz, T. (1989) Determination of the complete three- -dimensional structure of the trypsin inhibitor from squash seeds in aqueous solution by nuclcar magnetic resonance and a combination of distance geometry and dynamic simulated annealing. f. Mol. Biol. 210,635-648.
  • 31. Heitz, A., Chiche, L., Le-Nguyen, D. & Castro, B. (1989) 1H 2D NMR and distance geometry study of the folding of Ecballium elaterium trypsin inhibitor, a member of the squash inhi­bitors family. Biochemistry 28, 2392-2398.
  • 32. Stachowiak, K., Otlewski, J., Polanowski, A. & Dyckes, D.R (1990) Monitoring protein cleavage and concurrent disulfide bond assignment using thermospray LC/MS. Peptide Res. 3, 148-154.
  • 33. Holak, T.A., Habazettl, J., Oschkinat, H. & Otlewski, J. (1991) Structure of proteins in solution derived from homonuclear three- -dimensional NOE-NOE nuclear magnetic resonance spectroscopy. High resolution structure of squash trypsin inhibitor. J. Am. Chem. Soc. 113,3196-3198.
  • 34. Nilges, M., Habazettl,J., Briinger, A.T., Holak,T. A. (1991) Relaxation matrix refinement of the solution structure of squash trypsin inhibitor. J. Mol. Biol. 219, 499-510.
  • 35. Holak, T.A., Bode, W., Huber, R., Otlewski, J. & Wilusz, T. (1989) Nuclear magnetic resonance and X-ray structures of squash trypsin inhibitor exhibit the same conformation of the proteinase binding loop. }. Mol. Biol. 210,649-654.
  • 36. Krishnamoorthi, R., Lin, C.-LS., Gong, Y.X., VanderVelde, D. & Hahn, K. (1992) Proton NMR studies of Cucurbita maxima trypsin inhibitors: evidence for pH-dependcnt conformational change and His25-Tyr27 interaction. Biochemis­try 31,905-910.
  • 37. Likos, J.J. (1989) *H NMR studies of squash seed trypsin inhibitor. Int. J. Peptide Protein Res. 34, 381-386.
  • 38. Chiche, L., Gaboriaud, C, Heitz, A., Mornon, J.-P., Castro, B. & Kollman, P.A. (1989) Use of restrained molecular dynamics in water to determine three dimensional protein structure: Prediction of the three dimensional structure of Ecballium elaterium trypsin inhibitor II. Proteins 6,405-417.
  • 39. Bode, W., Epp, O., Huber, R., Laskowski, M., Jr. & Ardelt, W. (1985) The crystal and molecular structure of the third domain of silver pheasant ovomurid (OMSVP3). Eur. J. Biochem. 147,387- -395.
  • 40. McPhalen, GA. & James, M.N.G. (1987) Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds. Biochemistry 2b, 261-269.
  • 41. Chiche, L., Heitz, A., Padilla, A., Le-Nguyen, D. & Castro, B. (1993) Solution conformation of synthetic bis-headed inhibitor of trypsin and carboxypeptidase A: New structural alignment between the squash inhibitor and the potato carboxypeptidase inhibitor. Protein Eng. 6, 675-682.
  • 42. Nielsen, K.J., Alewood, D., Andrews, J., Kent, S.B.H. & Craik, D.J. (1994) An *H NMR deter­mination of the three dimensional structures of mirror image forms of a I.eu-5 variant of the trypsin inhibitor from Ecballium elaterium (EETI II). Protein Science 3,291-302.
  • 43. Krishnamoorthi. R., Gong, Y., Lin, C..-L.S. & VanderVelde, D. (1992) Two-dimensional NMR studies of squash family inhibitors. Sequence specific proton assignment and secondary structure of reactive site hydrolyzed Cucurbita maxima trypsin inhibitor III. Biochemistry 31, 898-904.
  • 44. Papamokos. E., Weber, E., Bode, W., Hubcr, R., Empie, M.W., Kato, I. & Laskowski, M., Jr. (1982) Crystallographic refinement of Japanese quail ovomucoid, a Kazal-type inhibitor and model building studies of complexes with serine proteases. /. Mol. Biol. 158,515-537.
  • 45. Wagner, G., Braun, W., Havel, T.F., Schaumann, T., Go, N. & Wuthrich, K. (1987) Protein structures in solution by nuclear magnetic resonance and distance geometry. The poly­peptide of the basic pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. J. Mol. Biol. 196, 611-639.
  • 46. Clore, G.M., Gronenborn, A.M., James, M.N.G., Kjacr, M., McPhalen, C.A. & Poulsen, F.M. (1987) The determination of the three-dimensional structure of barley serine proteinase inhibitor 2 in solution: A study using nuclear magnetic resonance, distance geometry and restrained molecular dynamics. Protein Eng. 1, 313-318.
  • 47. Otlewski, J. & Zbyryt, T. (1994) Single peptide bond hydrolysis/resynthesis in squash inhibitors of serine proteinases. I. Kinetics and thermodynamics of the interaction between squash inhibitors and bovine p-trypsin. Biochemistry 33, 200-207.
  • 48. Otlewski, J., Zbyryt, T., Krokoszynska, I. & Wilusz, T. (1990). Inhibition of serine proteina­ses by squash inhibitors. Biol. Chem. Hoppe-Seyler 371,589-594.
  • 49. Wynn, R. & Laskowski, M., Jr. (1990) Inhibition of human (i-factor XIIa by squash family serine proteinase inhibitors. Biochem. Biophys. Res. Commun. 166,1406-1410.
  • 50. Estell, D.A., Wilson, K.A. & laskowski, M., Jr. (1980) Thermodynamics and kinetics of the hydrolysis of the reactive site peptide bond in pancreatic trypsin inhibitor (Kunitz) by Der- masterias imbricafa trypsin. Biochemistry 19, 131-137.
  • 51. Quast, U., Fngel, J., Heumann, H., Krauze, G. & Steffen, E. (1978) Kinetics of the interaction of bovine pancreatic trypsin inhibitor (Kunitz) with a-chymotrypsin. Biochemistry 13, 2512- -2520.
  • 52. liiromi, K., Akasaka, K., Mitsui, Y., Tonomura, B. & Murao, S. (1985) Protein protease inhibitor — The case of Streptomyces subtilisin inhibitor (SSI); Elsevier, Amsterdam.
  • 53. Ardelt, W. & Laskowski, M., Jr. (1991) Effect of single amino acid replacements on the thermodynamics of the reactive site peptide bond hydrolysis in ovomucoid third domains. /. Mol. Biol. 220,1041-1053.
  • 54. Zbyryt, T. & Otlewski, J. (1991) Interaction bet­ween squash inhibitors and bovine trypsi- nogen. Biol. Chem. Hoppe-Seyler 372,255-262.
  • 55. I luber, R. & Bode, W. (1978) Structural basis of the activation and action of trvpsin. Acc. Chem. Res. 11,114-122.
  • 56. Antonini, E., Ascenzi, P., Bolognesi, M., Gatti, G., Guameri, M. & Menegatti, E. (1983) Inter­action between serine (pro)enzymes, and Kazal and Kunitz inhibitors. J. Mol. Biol. 165,543-558.
  • 57. Otlewski, J., Zbyryt, T., Dryjanski, M., Bulaj, G. & Wilusz, T. (1994) Single peptide bond hydro­lysis/ resynthesis in squash inhibitors of serine proteinases. II. Limited proteolysis of Cucurbita maxima trypsin inhibitor I (CMTI I) by pepsin. Biochemistry 33,208-213.
  • 58. Sottrup-Jensen, L., Sand, O., Kristensen, L. & Fey, G.H. (1989) The a-macroglobulin bait region. ). Biol. Chem. 264,15781-15789.
  • 59. Mast, A.E., Enghild, J.J. & Salvesen, G. (1992) Conformation of the reactive site loop of ai-proteinase inhibitor probed by limited proteolysis. Biochemistry 31,2720-2728.
  • 60. Kupryszewski, G., Ragnarsson, U., Rolka, K. & Wilusz, T. (1986) Solid-phase synthesis of trypsin inhibitor CMTI III from squash seeds (Cucurbita maxima). Int. J. Peptide Protein Res. 27, 245-250.
  • 61. Rolka, K., Kupryszewski, G., Ragnarsson, U., Otlewski, J., Wilusz, T. & Polanowski, A. (1989) Synthesis of an elastase inhibitor by mono- substitution of Arg5 with Val at the reactive site in a trypsin inhibitor from squash seeds (CM'Il III). Biol. Chem. Hoppe-Seyler 370,499-502.
  • 62. Rolka, K., Kupryszewski, G., Ragnarsson, U., Otlewski, J., Krokoszynska, I. & Wilusz, T. (1991). New synthetic analogues of trypsin inhibitor CMTI III from squash seeds; in Peptides 1990. Proceedings of the Twenty-First Y.uropean Peptide Symposium (Giralt, E. & Andreu, Dv eds.) pp. 768-771, ESCOM Science Publ.
  • 63. Rolka, K., Kupryszewski, G., Ragnarsson, U., Otlewski, J., Krokoszynska, I. & Wilusz, T. (1991) Chemical synthesis of new trypsin, chymo- trypsin and elastase inhibitors by amino-acid substitutions in a trypsin inhibitor from squash seeds (CMTI I). Biol. Chem. Hoppe-Seyler 372, 63-68.
  • 64. Rolka, K., Kupryszewski, G., Rozycki, J., Ragnarsson, U., Zbyryt, T. & Otlewski, J. (1992) New analogues of Cucurbita maxima trypsin inhibitor 111 (CMTI I III) with simplified struc­ture. Biol. Chem. Hoppe-Seyler 373,1055-1060.
  • 65. McWherter, C.A., Walkenhorst, W.F., Campbell, E.J. & Glover, G.I. (1989) Novel inhibitors of human leukocyte elastase and cathepsin G. Sequence variants of squash seed protease inhibitor with altered protease selectivity. Biochemistry 28,5708-5714.
  • 66. Favel, A., Le-Nguycn, D., Coletti-Previero, M.A. & Castro, B. (1989) Active site chemical muta­genesis of Ecballium elaterium trypsin inhibitor II: New microproteins inhibiting elastase and chymotrypsin. Biochem. Biophys. Res. Commun. 162,79-8Z
  • 67. Le-Nguyen, D., Mattras, H., Coletti-Previero, M.A. & Castro, B. (1989) Design and chemical synthesis of a 32 residues chimeric microprotein inhibiting both trypsin and carboxypeptidase A. Biochem. Biophys. Res. Commun. 162,1425-1430.
  • 68. Huang, Z., Wu, M., Qi, Z. & Chi, C. (1990) Total synthesis of Trichosanthes trypsin inhibitor and its analogue. Science in China B, 33,1192-1200.
  • 69. Le-Nguyen, D., Heitz, A., Chiche, L., Hajji, M.E. & Castro, B. (1993) Characterization and 2D NMR study of the stable 19-21, 15-271 2 disulfide intermediate in the folding of the 3 disulfide trypsin inhibitor EETI II. Protein Science 2,165-174.
  • 70. Heitz, A., Chiche, L., I.e-Nguyen, D. & Castro, B. (1995) Folding of the squash trypsin inhibitor EETI 11. Eur. /. Biocheni. 233,837-846.
  • 71. Pallaghy, P.K., Nielsen, K.J., Craik, D.J. & Norton, R.S. (1994) A common structural motif incorporating a cystine knot and a triple- -stranded p-sheet in toxic and inhibitory polypeptides. Protein Science 3,1833-1839.
  • 72. McDonald, N.Q. & Hendrickson, W.A. (1993) A structural superfamily of growth factors con­taining a cystine knot motif. Cell 73,421-424.
  • 73. Wells, J.A. (1990) Additivity of mutational effects in proteins. Biochemistry 29, 8509-8517.
  • 74. Laskowski, M., Jr., Park, S.J., Tashiro, M. & Wynn, R. (1989) Design of highly specific inhibitors of serine proteinases. UCLA Symposia on Molecular and Cellular Biology, New Series, 80 (Hutchens, T.W., ed.) pp. 149-168, Liss, Inc., New York.
  • 75. Hayashi, K., Takehisa, T., Hamato, N., Takano, R., Hara, S., Miyata, T. & Kato, H. (1994) Inhibition of serine proteinases of the blood coagulation system by squash family protease inhibitors. J. Biochem. (Tokyo) 116,1013-1018.
  • 76. Chen, X., Qian, Y., Chi, C., Gan, K., Zhang, M. & Chang-Qing, C. (1992) Chemical synthesis, molecular cloning, and expression of the gene coding for the Trichosanthes trypsin inhibitor — a squash family inhibitor. J. Biochem. (Tokyo) 112, 45-51.
  • 77. Rempola, B., Wilusz, T., Markiewicz, W. & Fikus, M. (1995) Synthesis, cloning, and expre­ssion in Escherichia coli of the gene coding for the trypsin inhibitor from Cucurbita pepo. Acta Biochim. Polon. 42,109-114.
  • 78. Bolewska, K., Krowarsch, D.,Otlewski, J., Luka- szewski, L., & Bierzynski, A. (1995) Synthesis, cloning, and expression in Escherichia coli of a gene coding for the Met8 Leu CMT1 I — a representative of the squash inhibitors of serine proteinases. FEBS Lett. 377,172-174.
  • 79. Nishino, J., Takano, R., Kamei-Hayashi, K., Minakata, H., Nomoto, K. & Hara, S. (1992) Amino-acid sequences of trypsin inhibitors from oriental pickling melon (Cucumis melo L. var. Common Makino) seeds. Biosci. Biotech. Biochem. 56,1241-1246.
  • 80. Hamato, N., Koshiba, T., Pham, T., Tatsumi, Y., Nakamura, D., Takano, R., Hayashi, K., Hong, Y. & Hara, S. (1992) Trypsin and elastase inhibitors from bitter gourd (Momordica charantia Linn.) seeds: Purification, amino acid sequences, and inhibitory activities of four new inhibitors. J. Biochem. (Tokyo) 117,432-437. 81. Lee, C. & IJn, J. (1995) Amino acid sequences of trypsin inhibitors from the melon Cucumis melo. /. Biochem. (Tokyo) 118,18-22.

Identyfikator YADDA

bwmeta1.element.agro-article-578c2516-dd7a-4bdf-812c-77d07a2d2f98