PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 44 | 3 |

Tytuł artykułu

Disulfide bonds in protein folding studies: friends or foes?

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The studies on protein folding pathways utilizing disulfide bonds as reporter groups in several protein model systems arc reviewed. Implications for a general mechanism of protein folding are discussed. An updated folding path­way for bovine pancreatic trypsin inhibitor (BPTI) based on recent data is proposed.

Wydawca

-

Rocznik

Tom

44

Numer

3

Opis fizyczny

p.433-452,fig.

Twórcy

autor
  • Polish Academy of Sciences, A.Pawinskiego 5A, 02-106 Warsaw, Poland

Bibliografia

  • 1. Gicrash, L.M. & King, J. (1990) Deciphering the second half of the genetic code; in Protein Folding. AAAS. Washington.
  • 2. Levinthal, C. (1968) Are there pathways for protein folding?«/. Chem. Phys. 65, 44-45.
  • 3. Anfinscn, C.B., Haber, E., Sela, M. & White. F.H. (1961) The kinctics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. U.S.A. 47, 1309-1314.
  • 4. Wetzel, R. (1996) For protein misassembly, it is the "r decade. Cell 86, 699-702.
  • 5. Baldwin, R.L. (1995) The nature of protein folding pathways: The classical versus the new view. J. Biomol. NMR 5, 103-109.
  • 6. Baldwin, R.L. (1996) Why is protein folding so fast? Proc. Natl. Acad. Sci. U.S.A. 93, 2627-2628.
  • 7. Weissman, J.S. (1995) All roads lead to Rome? The multiple pathways of protein folding. Chem. Biol. 2, 255-260.
  • 8. Mucke, M. & Schmid, X.F. (1994) Intact disul­fide bonds decelerate the folding of ribonu- clease Tl. J. Mol. Biol. 239, 713-725.
  • 9. Sosnick, T.R., Mayne, L., Miller, R. & Eng­lander, S.W. (1994) The barriers in protein folding. Nature Struct. Biol. 1, 149-155.
  • 10. Creighton, T.E. (1984) Disulfide bond forma­tion in proteins. Methods Enzymol. 107, 305-318.
  • 11. Creighton, T.E. (1986) Disulfide bonds as probes of protein folding pathways. Methods Enzymol. 131,83-106.
  • 12. Hwang, C., Sinskey, A.J. & Ix)dish. H.F. (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257, 1496-1502.
  • 13. Weissman, J.S. & Kim. P.S. (1991) Reexami­nation of the folding of BPTI: Predominance of native intermediates. Science 253, 1386- -1393.
  • 14. Marston, F.A.O. (1986) The purification of eukaryotic polypeptides synthesized in Es­cherichia coli. Biochem. J. 240, 1-12.
  • 15. Eyles, S.J.. Radford, S.E., Robinson, C.V. & Dobson, C.M. (1994) Kinetic consequences of the removal of a disulfide bridge on the folding of hen lysozyme. Biochemistry 33, 13038- 13048.
  • 16. Tang, J.-G. & Tsou, C.-L. (1990) The insulin A and B chains contain structural information for the formation of the native molecule. Bio­chem. J. 268, 423-455.
  • 17. Miller, J.A., Owers Narhi, L., Hua, Q.X., Roscnfeld, R., Arakawa, T., Rohde, M., Prestrelski, S., I^auren, S., Stoney, KS., Tsai, L. & Weiss, M.A. (1993) Oxidative refolding of insulin-like growth factor 1 yields two prod­ucts of similar thermodynamic stability: A bifurcating protein-folding pathway. Bio­chemistry 32, 5203-5213.
  • 18. Goto, Y. & Hamaguchi, K. (1981) Formation of the intrachain disulfide bond in the con­stant fragment of the immunoglobulin light chain. J. Mol. Biol. 146, 321-340.
  • 19. Chatrenet, B. & Chang, J.-Y. (1993) The di­sulfide folding pathway of hirudin elucidated by stop/go folding experiments. J. Biol. Chem. 268,20988 20996.
  • 20. Chang, J.-Y., Schindler, P., Ramsaier, U. & Lai, P.-II. (1995) The disulfide folding path­way of human epidermal growth factor. J. Biol. Chem. 270, 9207-9216.
  • 21. Chang, J.-Y., Canals, F., Schindler, P., Querol, K. & Aviles, F.X. (1994) The disulfide folding pathway of potato carboxypeptidase inhibitor. J. Biol. Chem. 269, 22087-22094.
  • 22. Chang, J.-Y. (1996) The disulfide folding pathway of tick anticoagulant peptide (TAP) a Kunitz-type inhibitor structurally homolo­gous to BPTI. Biochemistry 35, 11702-11709.
  • 23. Price-Carter, M., Gray, W.R. & Goldenberg. D.P. (1996) Folding of oconotoxins. 1. Effi­cient disulfide coupled folding of mature se­quences in vitro. Biochemistry 35, 15537- -15546.
  • 24. Takahashi, N. & Hiroso, M. (1992) Reversible denaturation of disulfide-reduced ovalbumin and its reoxidation generating the native cys­teine cross-link. J. Biol. Chem. 267, 11565- 11572.
  • 25. Cardamone, M., Puri, N.K. & Brandon. M.R. (1995) Comparing the refolding and reoxida­tion of recombinant porcine growth hormone from urea denatured state and from Es­cherichia coli inclusion bodies. Biochemistry 34, 5773-5794.
  • 26. Langley, K.E., Berg, T.F., Strickland, T.W., Fenton, D.M., Boone, T.C. & Wypych, J. (1987) Recombinant-DNA-derived bovine growth hormone from Escherichia coli. Eur. J. Biochem. 163,313-321.
  • 27. Chau, M.-H. & Nelson, J.W. (1992) Coopera­tive disulfide bond formation in apamin. Bio­chemistry 31, 4445-4450.
  • 28. Walker. K.W. & Gilbert, H. (1994) Effect of redox environment on the in vitro and in vivo folding of RTEM1 ^-lactamase and Es­cherichia coli alkaline phosphatase. J. Biol. Chem. 269, 28487-28493.
  • 29. Freeh, C., Wunderlich, M., Glockshubcr, R. & Schmid, F.X. (1996) Competition between DsbA-mediated oxidation and conformational folding of RTEM1 (^-lactamase. Biochemistry 35, 11386-11395.
  • 30. Clarke. J. & Fersht, A.R. (1993) Engineered disulfide bonds as probes of the folding path­way of barnase: Increasing the stability of proteins against the rate of denaturation. Bio­chemistry 32, 4322-4329.
  • 31. Strausberg, S., Alexander, P., Wang, L., Gal­lagher, T., Gilliland, G. & Bryan, P. (1993) An engineered disulfide cross-link accelerates the refolding rate of calcium-free subtilisin by 850-fold. Biochemistry 32, 10371-10377.
  • 32. Freedman, R.B. (1995) The formation of pro­tein disulphide bonds. Curr. Opin. Struct. Biol. 5, 85-91.
  • 33. Creighton.T.E. & Charles, I.G.( 1987) Biosyn­thesis, processing, and evolution of bovine pancreatic trypsin inhibitor. Cold Spring Harbor Symp. Quant. Biol. LII, 511-519.
  • 34. Creighton, T.E., Bagley, C.J., Cooper, L., Darby, N.J., Freedman, R.F., Kemmink, J. & Sheikh, A. (1993) On the biosynthesis of bo­vine pancreatic trypsin inhibitor (BPTI). J. Mol. Biol. 232, 1176-1196.
  • 35. Freeh, C. & Schmid, F.X. (1995) DsbA-medi- ated disulfide bond formation and catalyzed prolyl isomerisation in oxidative protein fold­ing. J. Biol. Chem. 270, 5367-5374.
  • 36. Bard well, J.C.A. & Beckwith, J. (1993) The bonds that tie: Catalyzed disulfide bond for­mation. Cell 74, 769-771.
  • 37. Zapun, A. & Creighton, T.E. (1994) Effects of DsbA on the disulfide folding of BPTI and (X-lactalbumin. Biochemistry 33, 5202- 5211.
  • 38. Fritz, II. & Wunderer, G. (1983) Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneim. Forsch. /Drug Res. 33, 479-494.
  • 39. Bode, W. & Huber, R. (1992) Natural protein proteinase inhibitors and their interaction with proteinases. Eur. J. Biochem. 204, 433- 451.
  • 40. Eigenbrot, C., Randal. M. & Kossiakoff, A.A. (1992) Structural effects induced by mu­tagenesis affected by crystal packing factors: The structure of a 30-51 disulfide mutant of basic pancreatic trypsin inhibitor. Proteins Struct. Funct. Genet. 14, 75-87.
  • 41. Deisenhofer, J. & Steigemann, W. (1975) Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1.5 A resolution. Acta Crystallogr. B31, 238-250.
  • 42. Wlodawer, A.. Walter, J., Huber, R. & Sjolin, L. (1984) Structure of bovine pancreatic tryp­sin inhibitor. Results of joint neutron and X-ray refinement of crystal form 11. J. Mol. Biol. 180, 301-329.
  • 43. Wlodawer, A., Nachman. J., Gilliland. G.L., Gallagher, W. & Woodward, C. (1987) Struc­ture of form 111 crystals of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 198, 469-480.
  • 44. Hynes, T.R., Randal, M., Kennedy, L.A., Eigenbrot, C. & Kossiakoff, A.A. (1990) X-ray crystal structure of the inhibitor domain of Alzheimer's amyloid |5-protein precursor. Bio­chemistry 29, 10018-10022.
  • 45. Eigenbrot, C., Randal, M. & Kossiakoff, A.A. (1990) Structural effects induced by removal of a disulfide-bridge: The X-ray structure of the C30A/C51A mutant of basic pancreatic trypsin inhibitor at 1.6 A. Protein Eng. 3, 591-598.
  • 46. Housset, D., Kim, K.-S., Fuchs, J., Woodward, C. & Wlodawer, A. (1991) Crystal structure of a Y35G mutant of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 220, 757-770.
  • 47. Arnoux. B., Merigeau, K., Saluc^jian, P., Nor- ris, F., Norris, K., Bjorn. S., Olsen. O., Pe­tersen, L. & Ducruix, A. (1995) The 1.6 A structure of Kunitz-type domain from the 0(3 chain of human type VI collagen. J. Mol. Biol. 246, 609 -(517.
  • 48. Wagner. G. & Wuthrich, K. (1982) Amide proton exchange and surface conformation of the basic pancreatic trypsin inhibitor in solu­tion. J. Mol. Biol. 160, 343-361.
  • 49. van Mierlo, C.P.M., Darby, N.J., Neuhaus, D. & Creighton. T.E. (1991) (14-38, 30-51) dou­ble disulphide intermediate in folding of lx>- vine pancreatic trypsin inhibitor: A two di­mensional JH nuclear magnetic resonance study. J. Mol. Biol. 222, 353-371.
  • 50. van Mierlo, C.P.M., Darby, N.J., Neuhaus, D. & Creighton, T.E. (1991 ) Two-dimensional 1II NMR study of the (5-55) single disulphide intermediate of bovine pancreatic trypsin in­hibitor. J. Mol. Biol. 222, 373-390.
  • 51. van Mierlo, C.P.M., Darby, N.J. & Creighton, T.E. (1992) The partially folded conformation of the Cys30-Cys51 intermediate in the disul­phide folding pathway of bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. U.S.A. 89, 6775-6779.
  • 52. van Mierlo. C.P.M., Darby, N.J., Keeler, J., Neuhaus, D. & Creighton, T.E. (1993) Par­tially folded conformation of the (30-51) inter­mediate in the disulphide folding pathway of bovine pancreatic trypsin inhibitor. and 1SN resonance assignments and determina­tion of backbone dynamics from 15N relaxa­tion measurements. J. Mol. Biol. 229, 1125- -1146.
  • 53. van Mierlo, C.P.M., Kemmink, J., Neuhaus, D., Darby, N.J. & Creighton, T.E. (1994) !H NMR analysis of the partly-folded non-native two-disulphide intermediates (30-51. 5-14) and (30-51, 5-38) in the folding pathway of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 235, 1044-1061.
  • 54. Berndt, K.D., Guntert, P., Orbons. L P. & Wuthrich, K. (1992) Determination of a high quality nuclear magnetic resonance solution structure of the bovine pancreatic trypsin in­hibitor and comparison with three crystal structures. J. Mol. Biol. 227, 757-775.
  • 55. Zweckstetter, M., Czisch, M.. Mayer, U., Chu, M.-L., Zinth, W., Timpl, R. & Holak, T.A. (1995) Structure and multiple conformations of the Kunitz-type domain from human type VI collagen «3(VI) chain in solution. Structure 4, 195-209.
  • 56. Moses, E. & Hinz, II.-J. (1983) Basic pancre­atic trypsin inhibitor has unusual thermody­namic stability parameters.«/. Mol. Biol. 170, 765-776.
  • 57. Makhatadze. G.I., Kim, K.-S., Woodward, C. & Privalov, P.L. (1993) Thermodynamics of BPTI folding. Protein Sci. 2, 2028-2036.
  • 58. Richardson, J.S. ( 1985) Schematic drawings of protein structures. Methods. Enzymol. 115, 359 380.
  • 59. Creighton. T.E. & Goldenberg, D.P. (1984) Kinetic role of the meta-stable native like two disulfide species in the folding transition of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 179,497-526.
  • 60. Creighton, T.E. (1978) Experimental studies of protein folding and unfolding. Prog. Bio- phys. Mol. Biol. 33, 231-297.
  • 61. Creighton, T.E. (1974) Renaturation of the reduced bovine pancreatic trypsin inhibitor. J. Mol. Biol. 87, 563-577.
  • 62. Creighton, T.E. (1977) Conformational re­strictions on the pathway of folding and un­folding of BPTI. J. Mol. Biol. 113, 275-293.
  • 63. Weissman, J.S. & Kim, P.S. (1992) Kinetic role of nonnative species in the folding of bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. U.S.A. 89, 9900-9904.
  • 64. Weissman, J.S. & Kim, P.S. (1992) The pro region of BPTI facilitates folding. Cell 71, 841-851.
  • 65. Weissman, J.S. & Kim, P.S. (1993) Efficient catalysis of disulfide rearrangements by pro­tein disulfide isomerase. Nature 365, 185-188.
  • 66. Weissman, J.S. & Kim, P.S. (1995) A kinetic explanation for the rearrangement pathway of BPTI folding. Nature Struct. Biol. 2, 1123-1130.
  • 67. Dadlez, M. & Kim, P.S. (1995) A third native one-disulphide intermediate in the folding of bovine pancreatic trypsin inhibitor. Nature Struct. Biol. 2, 674-679.
  • 68. Dadlez, M. & Kim, P.S. (1996) Rapid forma­tion of the native 14-38 disulfide bond in the early stages of BPTI folding. Biochem istry 35, 16153-16164.
  • 69. Dadlez, M. (1997) Hydrophobic interactions accclcrate early stages of the folding of BPTI. Biochemistry 36, 2788 2797.
  • 70. Creighton, T.E. (1992) The disulfide folding pathway of BPTI. Science 256, 111-112.
  • 71. Weissman, J.S. & Kim, P.S. (1992) The disul­fide folding pathway of BPTI. Science 256, 112-114.
  • 72. Goldenberg, D.P. (1992) Native and non-na­tive intermediates in the BPTI folding path­way. Trends Biochem. Sci. 17, 257 261.
  • 73. Hoffman, M. (1991) Straightening out the protein folding puzzle. Science 253, 1357- -1358.
  • 74. Crcighton, T.E. ( 1979) Electrophoretic analy­sis of the unfolding of proteins by urea. J. Mol. Biol. 129. 235-264.
  • 75. Darby, N.J., Morin. P.E., Talbo, G. & Crei- ghton, T.E. (1995) Refolding of bovine pancre­atic trypsin inhibitor via non-native disul- phide intermediates. J. Mol. Biol. 249, 463—477.
  • 76. Darby, N.J. & Creighton, T.E. (1993) Dissect­ing the disulphide-coupled folding pathway of bovine pancreatic trypsin inhibitor. Forming the first disulfide bonds in analogues of the reduced protein. J. Mol. Biol. 232, 873-896.
  • 77. Creighton, T.E. (1988) On the relevance of non-random polypeptide conformations for protein folding. Biophys. Chenu 31, 155-162.
  • 78. Goldenberg, D.P. & Zhang, J. (1993) Small effects of amino acid replecements on the reduced and unfolded state of pancreatic tryp­sin inhibitor. Proteins: Struct. Fund. Genet. 6, 259-266. (1980) Kosen, P.A., Creighton. T.E. & Blout, E.R. (1980) Ultraviolet difference spectroscopy of intermediates trapped in unfolding and re­folding of bovine pancreatic trypsin inhibitor. Biochemistry 19, 4936-4944. (1981) Kosen, P.A., Creighton, T.E. & Blout, E.R. (1981) Circular dichroism spectroscopy of bo­vine pancreatic trypsin inhibitor and five al­tered conformational states. Relationship of conformation and the refolding pathway of the trypsin inhibitor. Biochemistry 20, 5744-5754.
  • 81. Creighton, T.E. (1975) Reactivities of the cys­teine residues of the reduced pancreatic tryp­sin inhibitor. J. Mol. Biol. 96, 777-782.
  • 82. Roder, II. (1981 ) Ph.D. Thesis No. 6932, ETH Zurich.
  • 83. Kemmink, J. & Creighton, T.E. (1993) Local conformations of peptides representing the entire sequence of bovine pancreatic trypsin inhibitor and their roles in folding. J. Mol. Biol. 234, 861-878.
  • 84. Kemmink, J., van Mierlo, C.P.M., Scheek. R.M. & Creighton, T.E. (1993) Local structure due to an aromatic-amide interaction ob­served by ^-nuclear magnetic resonance spectroscopy in peptide related to the N-ter- minus of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 230, 312-322.
  • 85. Lumb, K.J. & Kim, P.S. (1994) Formation of a hydrophobic cluster in denatured bovine pancreatic trypsin inhibitor. J. Mol. Biol. 236, 412-420.
  • 86. Pan, H., Barbar, E., Barany, G. & Woodward, C. (1995) Extensive non-random structure in reduced and unfolded bovine pancreatic tryp­sin inhibitor. Biochemistry 34, 13974-13981.
  • 87. Amir, D. & Haas, E. (1988) Reduced bovine pancreatic trypsin inhibitor has a compact structure. Biochemistry 27, 8889-8893.
  • 88. Amir, D., Krausz, S. & Haas. E. (1992) Detec­tion of local structures in reduced unfolded bovine pancreatic trypsin inhibitor. Proteins: Struct. Funet. Genet. 13, 162-173.
  • 89. Gottfried. D.S. & Haas, E. (1992) Nonlocal interactions stabilize compact folding inter­mediates in reduced unfolded bovine pancre­atic trypsin inhibitor. Biochemistry 31, 12353-12362.
  • 90. Ittah, V. & Haas, E. (1995) Nonlocal interac­tions stabilize long range loops in the initial folding intermediates of reduced bovine pan­creatic trypsin inhibitor. Biochemistry 34, 4493-4506.
  • 91. Ferrer, M., Barany, G. & Woodward. C. (1995) Partially folded, molten globule and molten coil states of bovine pancreatic trypsin inhibi­tor. Nature Struct. Biol. 2. 211-217.
  • 92. Krokoszynska, I., Dadlez, M. & Otlewski. J. (1997) Early folding intermediates of BPTI folding bind to trypsin. J. Mol. Biol, (in press).
  • 93. Barbar, E., Barany, G. & Woodward, C. (1995) Dynamic structure of a highly ordered p-sheet molten globule: Multiple conforma­tions with a stable core. Biochemistry 34, 11423-11434.
  • 94.States, D.J., Creighton, T.E., Dobson, C.M. & Karplus, M. (1987) Conformations ofinter- mediates in the folding of the pancreatic trypsin inhibitor. J. Mol. Biol. 195, 731-739.
  • 95.Oas, T.G. & Kim, P.S. ( 1988) A peptide model of a protein folding intermediate. Nature 336, 42—48.
  • 96.Staley, J.P. & Kim, P.S. (1990) Role of a subdomain in the folding of bovine pancreatic trypsin inhibitor. Nature 344, 685-688.
  • 97.Staley, J.P. & Kim, P.S. (1992) Complete folding of bovine pancreatic trypsin inhibitor with only a single disulfide bond. Proc. Natl. Acad. Sci. U.S.A. 89, 1519-1523.
  • 98.Staley, J.P. & Kim, P.S. (1994) Formation of a native-like subdomain in a partially-folded intermediate of bovine pancreatic trypsin in­hibitor. Protein Sci. 10, 1822-1832.
  • 99.Darby, N.J., van Mierlo, C.P.M., Scott, G.H.E., Neuhaus, D. & Creighton, T.E. (1992) Kinetic roles and conformational properties of the non-native two-disulfide in­termediates in the refolding of BPTI. J. Mol. Biol. 22, 905-911.
  • 100. States, D.J., Dobson, C.M., Karplus, M. & Creighton, T.E. (1984) A new two-disulfide intermediate in the refolding of reduced BPTI. J. Mol. Biol. 174, 411-418.
  • 101. Schulman, B.A. & Kim, P.S. ( 1994) Hydrogen exchange in BPTI variants that do not share a common disulfide bond. Protein Sci. 3, 2226-2232.
  • 102.Stassinopulou, C.I., Wagner, G. & Wuthrich, K. (1984) Two dimensional lH NMR of two chemically modified analogs of the basic pan­creatic trypsin inhibitor. Eur. J. Biochem. 145, 423-430.
  • 103. Goldenberg, D.P. (1988) Kinetic analysis of the folding and unfolding of a mutant form of bovine pancreatic trypsin inhibitor lacking the cysteine 14 and cysteine 38 thiols. Bio­chemistry 27, 2481-2489.
  • 104. Zhang, J.-X. & Goldenberg, D.P. (1993) Amino acid replacement that eliminates ki­netic traps in the folding pathway of BPTI. Biochemistry 32, 14075-14081.
  • 105.Ostermeier, M. & Georgiou, G. (1994) The folding of BPTI in the Escherichia coli peri­plasm. J. Biol. Chem. 269, 21072-221077.
  • 106. Heincmann, U. & Sacnger, W. (1982) Spe­cific protein-nucleic acid recognition in ri- bonuclease Tl-2'guanylic acid complex. Na­ture 299, 27-31.
  • 107.0obatake, M., Takahashi, S. & Ooi, T. (1979) Conformational stability of ribonuclease Tl. I. Thermal denaturation and effects of salts. J. Biochem. 86, 55-63.
  • 108. Kiefhaber, T., Quaas, R., Hahn, U. & Schmid, F.X. (1990) Folding of ribonuclease Tl. 1. Existence of multiple unfolded states created by proline isomerization. Biochemistry 29, 3053-3060.
  • 109. Kiefhaber, T., Quaas, R., Hahn, U. & Schmid, F.X. (1990) Folding of ribonuclease Tl. 2. Kinetic models for the folding and unfolding reactions. Biochemistry 29, 3061-3070.
  • 110. Kiefhaber, T., Schmid, F.X., Willaert, K., Engelborghs, Y. & Chaffotte, A. (1992) Struc­ture of rapidly formed intermediate in RNase Tl folding. Protein Sci. 1, 1162-1172.
  • 111. Mullins, L.S., Pace, C.N. & Rauschel, F.M. (1993) Investigation of ribonuclease Tl fold­ing intermediates by H/D amide exchange — 2D NMR spectroscopy. Biochemistry 32, 6152-6156.
  • 112. Fischer, G., Wittman-Liebold, B., Lang, K, Kiefhaber, T. & Schmid, F.X. (1989) Cyclo- philin and peptidyl-prolyl-ci'.s//rarc.s-isom- erase are probably identical proteins. Nature 337, 476-478.
  • 113.Schoenbrunner, E.R., Mayer, S., Tropshung, M., Fischer, G., Takahashi, N. & Schmid, F.X. (1991) Catalysis of protein folding by cyclophilins from different species is highly conserved. J. Biol. Chem. 266, 3630-3637.
  • 114. Kiefhaber, T., Grunert, H.P., Hahn, U. & Schmid, F.X. (1992) Folding of RNase Tl is decelerated by a specific tertiary contact in a folding intermediate. Proteins: Struct. Funct. Genet. 12, 171-179.
  • 115. Kiefhaber, T., Grunert, H.-P., Hahn, U. & Schmid, F.X. (1990) Replacement of a cis proline simplifies the mechanism of ribonu­clease Tl folding. Biochemistry 29, 6475- -6480.
  • 116. Mayr, L. & Schmid, F.X. (1993) Kinetic models for unfolding and refolding of ribonu- clease T1 with substitution of cis-proline 39 with alanine. J. Mol. Biol. 231, 913-926.
  • 117. Mayr, L., Willibold, D., Roesch, P. & Schmid, F.X. (1995) Generation of a non-prolyl cis peptide bond in ribonuclease Tl. J. Mol. Biol. 240, 288-293.
  • 118. Pace, N. & Creighton, T.E. (1986) The disul- phide folding pathway of ribonuclease Tl. J. Mol. Biol. 188, 477—486.
  • 119. Mayr, L. & Schmid, F.X. (1994) Role of the Cys2-Cysl() disulfide bond for the structure, stability, and folding kinetics of ribonuclease Tl. Protein Sci. 3, 227-239.
  • 120. Pace, N., Grimsley, G.R., Thomson, J. A & Barnett, B.J. (1988) Conformational stability and activity of RNase Tl with zero, one and two intact disulfide bonds. J. Biol. Chem. 263, 11820-11825.
  • 121. Mucke, M. & Schmid. F.X. (1992) Enzymatic catalysis of prolyl isomerization in an unfold­ing protein. Biochemistry 31, 7848-7854.
  • 122. Mucke, M. & Schmid, F.X. (1994) Folding of ribonuclease Tl in the absence of the disul­fide bonds. Biochemistry 33, 14608-14619.
  • 123. Ruoppolo, M. & Freedman, R.B. (1995) Re­folding by disulfide isomerization: the mixed disulfide between ribonuclease Tl and glu­tathione as a model refolding substrate. Bio­chemistry 34, 9380-9388.
  • 124. Freeh, C. & Schmid, F.X. (1995) Influence of protein conformation on disulfide bond for­mation in the oxidative folding of ribonu­clease Tl. J. Mol. Biol. 251, 135—149.
  • 125. Wlodawer, A., Svensson, L.A., Sjolin, L. & Gilliland. G.L. (1988) Structure of phos­phate-free ribonuclease A refined at 1.26 A. Biochemistry 27, 2705-2713.
  • 126. Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science 181, 223-230.
  • 127. Cook, K.H., Schmid, F.X. & Baldwin, R.L. (1979) Role of proline isomerization in fold­ing of ribonuclease A Proc. Natl. Acad. Sci. U.S.A. 76, 6157-6161.
  • 128.Schultz, D.A., Schmid, F.X. & Baldwin, R.L. (1982) Cis proline mutants of ribonuclease A.1I. Elimination of the slow folding forms by mutation. Protein Sci. I, 917-924.
  • 129. Dodge, R.W. & Scheraga, H. A. (1996) Folding and unfolding kinetics of the proline to alan­ine mutants of bovine pancreatic ribonu­clease A. Biochemistry 35, 1548-1559.
  • 130. Hantgan, R.R., Hammes, G.G. & Scheraga, H.A. (1974) Pathways of folding of reduced bovine pancreatic ribonuclease. Biochemis­try 13, 3421-3431.
  • 131. Rothwarf, D.M. & Scheraga, H.A. (1993) Re­generation of bovine pancreatic ribonu­clease. Biochemistry 32, 2671-2703.
  • 132. Creighton, T.E. (1979) Intermediates in the refolding of reduced ribonuclease A. J. Mol. Biol. 129,411-431.
  • 133. Wearne, S.J. & Creighton, T.E. (1988) Fur­ther experimental studies of the disulfide folding transition of ribonuclease A. Proteins: Struct. Fund. Genet. 4, 251-261.
  • 134. Konishi, Y., Ooi, T. & Scheraga, H.A. (1982) Regeneration of ribonuclease A from reduced protein. Rate-limiting steps. Bu>chemistry 21, 4734-4740.
  • 135. Konishi, Y., Ooi, T. & Scheraga, H.A. (1982) Regeneration of ribonuclease A from reduced protein. Energetic analysis. Biochemistry 21, 4741-4748.
  • 136. Konishi, Y., Ooi, T. & Scheraga, H.A. (1982) Regeneration of RNase A from the reduced protein: Models of regeneration pathways. Proc. Natl. Acad. Sci. U.S.A. 79, 5734-5738.
  • 137. Konishi, Y., Ooi, T. & Scheraga, H.A. (1981) Regeneration of ribonuclease A from reduced protein. Isolation and identification of inter­mediates and equilibrium treatment. Bio­chemistry 20, 3945-3955.
  • 138. Konishi, Y. & Scheraga, H.A. (1980) Regen­eration of ribonuclease A from reduced pro­tein. Conformational analysis of the inter­mediates by NMR spectroscopy. Biochemis­try 19, 1316-1322.
  • 139. Creighton, T.E. (1988) Toward a better un­derstanding of protein folding pathways. Proc. Natl. Acad. Sci. U.S.A. 85, 5082-5086.
  • 140.Scheraga, H.A., Konishi, Y., Rothwarf, D.M. & Hui, P.W. (1987) Toward a better under­standing of the folding of ribonuclease A. Proc. Natl. Acad. Sci. U.S.A 84, 5740-5744.
  • 141. Rothwarf, D.M. & Scheraga, H.A. (1991) Re­generation and reduction of native bovine pancreatic ribonuclease A with oxidized and reduced DTT. J. Am. Chem. Soc. 113, 6293- -6295.
  • 142. Telluri, S., Rothwarf, D.M. & Scheraga, H.A. (1994) Structural characterization of a three disulfide intermediate of ribonuclease A in­volved both in the folding and unfolding pathway. Biochemistry 33, 10437-10449.
  • 143.Buckler, D.R., Haas, E. & Scheraga, H.A. (1995) Analysis of the structure of ribonu­clease A in native and partially denatured states by time-resolved nonradiative dy­namic excitation energy transfer between site-specific extrinsic probes. Biochemistry 34,15965-15978.
  • 144. Beals, J.M., Haas, E., Krausz, S. & Scheraga, H.A. (1991) Conformational studies of a pep­tide corresponding to a region of the C-termi- nus of ribonuclease A. Biochemistry 30, 7680-7692.
  • 145.Sosnick, T.R. & Trewhclla, J. (1992) Dena­tured states of ribonuclease A have compact dimensions and residual secondary struc­ture. Biochemistry 31, 8329-8335.
  • 146. Wright, P.E., Dyson, H.J. & Lerner, A.R. (1988) Conformation of peptide fragments of proteins in aqueous solution: Implications for initiation of protein folding. Biochemistry 27, 7167-7175.
  • 147. Acharya, K.R., Stuart. D.I., Walker, N.P.C., Lewis, M. & Philips, DC. (1989) Refined structure of baboon a-lactalbumin at 1.7 A resolution. J. Mol. Biol. 208, 99-127.
  • 148. Acharya, K.R., Ren, J., Stuart, D.I., Philips, D.C. & Fcnna, R E. (1991) Crystal structure of human a-lactalbumin at 1.7 A resolution. J. Mol. Biol. 221, 571-581.
  • 149. Vanaman, T.C., Brew, K. & Hill, R.L. (1970) The disulfide bonds of bovine a-lactalbumin. J. Biol. Chem. 245, 4583-4590.
  • 150. Kuwajima, K., Nitta, K., Yoneyama, M. & Sugai, S. (1976) Three-state denaturation of a-lactalbumin by guanidine hydrochloride. J. Mol. Biol. 106, 359-373.
  • 151. Dolgikh, D.A., Gilmanshin, R.I., Brazhnikov, E. V., Bychkova, V.E., Semisotnov, G.V., Ven- yaminov, S.Y. & Ptitsyn, O.B. (1981) a-Lac- toglobulin: compact state with fluctuating tertiary structure? FEBS Lett. 136,311-315.
  • 152. Xie, D., Bhakuni, V. & Freire, E. (1991) Calorimetric determination of the energetics of the molten globule intermediate in protein folding: apo a-lactoglobulin. Biochemistry 30, 10673-10678.
  • 153. Ewbank, J.J. & Creighton, T.E. (1993) Path­way of disulphide-coupled unfolding and re­folding of bovine a-lactalbumin. Biochemis­try 32, 3677-3693.
  • 154. Ewbank, J.J. & Creighton, T.E. (1993) Struc­tural characterization of the disulfide folding intermediate of bovine a-lactalbumin. Bio­chemistry 32, 3694-3707.
  • 155. Ewbank, J.J. & Creighton, T.E. (1991) The molten globule protein conformation probed by disulphide bonds. Nature 350, 518-520.
  • 156. Peng, Z.Y. & Kim, P.S. (1994) A protein dissection study of a molten globule. Bio­chemistry 33, 2136-2141.
  • 157. Wu, C.L., Peng, Z.Y. & Kim, P.S. (1995) Bipartite structure of the a-lactalbumin mol­ten globule. Nature Struct. Biol. 2, 281-286.
  • 158. Peng, Z.Y., Wu, C.L. & Kim, P.S. (1995) Local structural preferences in the a-lactalbumin molten globule. Biochemistry 34,3248-3252.
  • 159. Kuwajima, K. (1989) The molten globule as a clue for understanding the folding and cooperativity of globular protein structure. Proteins: Struct. Fund. Genet. 6, 87-103.
  • 160. Ptitsyn, O.B. (1992) in Protein Folding (Creighton, T.E., ed.) pp. 243-300, W.H. Freeman & Co., New York.
  • 161. de Young, L.R., Burton, L.E., Liu, J., Powell, M.F., Schmelzer, C.H. & Skelton, N.J. (1996) RhNGF slow unfolding is not due to proline isomerization: Possibility of a cysteine knot loop-threading mechanism. Protein Sci. 5, 1554-1566.
  • 162. Owers Narhi, L., Hua, Q.-X., Arakawa, T., Fox, G.M., Tsai, L., Rosenfeld, R., Hoist, P., Miller, J.A. & Weiss. M.A. (1993) Role of native disulfide bonds in the structure and activity of insulin-like growth factor 1: Ge­netic models of protein folding intermedi­ates. Biochemistry 32, 5214-5221.
  • 163. Price-Carter, M., Gray, W.R. & Goldenberg, D.P. (1996) Folding of a>-conotoxins. 2. Influ­ence of precursor sequences and protein di­sulfide isomerase. Biochemistry 35, 15547- -15557.
  • 164.Kim, J.S. & Raines, R.T. (1994) A misfolded but active dimer of bovine seminal ribonu- clease. Eur. J. Biochem. 224, 109-114.
  • 165.O'Shea, E.K., Rutkowski, R., Stafford, W.F. & Kim, P.S. (1989) Preferential heterodimer formation by isolated leucine zippers from fos and jun. Science 245, 646-648.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-55fbda96-c8a8-4a54-b96a-2b510733fac6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.