The constant-current chronopotentiometric measurements of egg yolk phosphatidylcholine bilayer membrane without and with cholesterol are presented. It was demonstrated that the constant-intensity current flow through the bilayer membranes without and with cholesterol generated the oscillating pores in their structures. The presence of cholesterol in the bilayer membrane increased the value of critical potential at which pores could be formed. The shift in the distribution of calculated pore radii towards smaller values was observed in the bilayer containing cholesterol. It was postulated that greater stability of bilayer with cholesterol resulted from increased critical pore radius (at which the bilayer would rupture). The implications of the membrane cholesterol for the application of constant-current method as a biotechnological tool for incorporating molecules of different size are discussed.
1. Gennis, R. B. Biomembranes. Molecular structure and function. Springer-Verlag, New York, 1989.
2. Chapman, D., Kramers, M. T. C. and Restall, C. J. Cholesterol and biomembrane structures, in: Sterols and bile acids, (Danielsson, H. and Sjoval, J., Eds), Elsevier Science Publishers B. V. 1985, 151-174.
3. Li, L.-K., So, L. and Spector, A. Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses. J. Lipid Res. 26 (1985) 600-609.
4. Demel R. A. and DeKruijff, B. The function of sterols in membranes. Biochim. Biophys. Acta, 457 (1976) 109-132.
5. Yeagle, P. L. Cholesterol and the cell membrane. Biochim. Biophys. Acta, 822 (1985) 267-287.
6. Tu, K., Klein, M. L. Tobias, D. J. Constant-pressure molecular dynamics investigation of cholesterol effect in a dipalmitoylphosphatidylcholine bilayer. Biophys. J. 75 (1998) 2147-2156.
7. Schofield, M., Jenski, J. L., Dumaual, A. C. and Stillwell, W. Cholesterol versus cholesterol sulfate: effects on properties of phospholipid bilayers containing docosahexaenoic acid. Chem. Phys. Lipids, 95 (1998) 23-36.
8. Nicol, F., Nir, S. and Szoka, Jr., F. C. Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide. Biophys. J. 71 (1996) 3288-3301.
9. Imaizumi, S. and Hatta, I. Binary mixtures of phospholipids and cholesterol studied by dynamic heat capacity measurements. J. Phys. Soc. Jpn. 52 (1984) 4476-4487.
10. Genz, A., Holzwarth, F. and Tsong, T. The influence of cholesterol on the main phase transition of unilammellar dipalmitoylphosphatidylcholine vesicles. A differential scanning calorimetry and iodine laser T-jump study. Biophys J. 50 (1986) 1043-1051.
11. Mabrey, S., Mateo, P. L. and Sturtevant, J. M. High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoylphosphatidylcholines. Biochemistry, 17 (1978) 2464-2468.
12. Presti, F. T., Pace, R. J. and Chan, S. I. Cholesterol-phospholipid interaction in membranes. Biochemistry, 21 (1982) 3831-3835.
13. Needham, D., McIntosh, T. J. and Evans, E. Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry, 27 (1988) 4668-4673.
14. Hui, S. W. and He, N.-B. Molecular organisation in cholesterol-lecithin bilayers by X-ray and electron diffraction measurements. Biochemistry, 22 (1983) 1159-1164.
15. Knoll, W., Schmidt, G., Ibel, K. and Sackmann, E. Small-angle neutron scattering study off lateral phase separation in dimyristoylphosphatidylcholine-cholesterol mixed membranes. Biochemistry, 24 (1985) 5240-5246.
16. O’Leary, T. and Levin, I. W. Raman spectroscopy of selectively deuterated dimyristoylphosphatidylcholine: studies on dimyristoylphosphatidylcholine-cholesterol bilayers. Biochim. Biophys. Acta, 854 (1986) 321-324.
17. Pink, D. A., Green, T. J. and Chapman, D. Raman scattering in bilayers of saturated phosphatidylcholines. Experiment and theory. Biochemistry, 19 (1980) 349-356.
18. Copeland, B. R. and McConnell, H. M. The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol. Biochim. Biophys. Acta, 599 (1980) 95-109.
19. van Ginkel, G., Korstanje, L. J., van Lengen, H. and Levine, Y. K. The correlation between molecular orientational order and reorientational dynamics of probe molecules in lipid multilayers. Faraday Discuss. Chem. Soc. 81 (1986) 49-61.
20. Chabanel, A., Flamm, M., Sung, K. L. P., Lee, M. M., Schachter, D. and Chien, S. Influence of cholesterol content on red cell membrane viscoelasticity and fluidity. Biophys. J. 44 (1983) 171-176.
21. Robello, M. and Gliozzi, A. Conductance transition induced by an electric field in lipid bilayers. Biochim. Biophys. Acta, 928 (1989) 173-176.
22. Genco, I., Gliozzi, A., Relini, A., Robello, M. and Scalas, E. Electroporation in symmetric and asymmetric membranes. Biochim. Biophys. Acta, 1149 (1993) 10-18.
23. Zhelev, D. V. and Needham, D. Tension-stabilised pores in giant vesicles: determination of pore size and pore line tension. Biochim. Biophys. Acta, 1147 (1993) 89-104.
24. McMullen, T. P. W. and McElhaney, R. N. Physicals studies of cholesterol-phospholipid interactions. Curr. Opin. Colloid Interface Sci. 1 (1997) 2616-2629.
25. Needham, D. and Hochmuth, R. M. Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys. J. 55 (1989) 1001-1009.
26. Moroz, J. D. and Nelson, P. Dynamically stabilised pores in bilayer membranes. Biophys. J. 72 (1997) 2211-2216.
27. Karolis, Ch., Coster, H. G. L., Chilcott, T. C. and Barrow, K. D. Differential effects of cholesterol and oxidised-cholesterol in egg lecithin bilayers. Biochim. Biophys. Acta, 1368 (1998) 247-255.
28. Tsong, T. Y. Electroporation of cell membranes. Biophys. J. 60 (1991) 297-306.
29. Weaver, J. C. Molecular basis for cell membrane electroporation. Ann. New York Acad. Sci. 720 (1994) 141-152.
30. Kalinowski, S., Ibron, G., Bryl, K. and Figaszewski, Z. Chronopotentiometric studies of electroporation of bilayer lipid membranes. Biochim. Biophys. Acta. 1369 (1998) 204-212.
31. Mueller, P., Rudin, D. O., Tien, H. T. and Wescott, W. C. Methods for the formation of single bimolecular lipid membranes in aqueous solutions. J. Phys. Chem. 67 (1963) 534-535.
32. Kalinowski, S. and Figaszewski, Z. A four-electrode system for measurements of bilayer lipid membrane capacitance. Meas. Sci. Technol. 6 (1995) 1043-1049.
33. Kalinowski, S. and Figaszewski, Z. A four-electrode potentiostat-galvanostat for studies of bilayer lipid membranes. Meas. Sci. Technol. 6 (1995) 1050-1055.
34. Neumann, E., Sowers, A. E. and Jordan. C. A. eds. Electroporation and electrofusion in cell biology. Plenum Press, New York, 1989.
35. Janas, T., Walinska, K. and Janas, J. Electroporation of polyprenol- phosphatidylcholine bilayer lipid membranes. Bioelectrochem. Bioenerg. 45 (1998) 215-220.
36. Weaver, J. C. and Chizmadzhev, Yu. A. Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41 (1996) 135-160.
37. Scott, H. L. and Kalaskar, S. Lipid chains and cholesterol in model membranes: a Monte Carlo study. Biochemistry, 28 (1989) 3687-3691.
38. Pasenkiewicz-Gierula, M., Subczynski, W. K. and Akihiro, K. Rotational diffusion of a steroid molecule in phosphatidylcholine-cholesterol membranes: fluid-phase microimmiscibility in unsaturated phosphatidylcholine-cholesterol membranes. Biochemistry 29 (1990) 4059-4069.