PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 54 | 3 |

Tytuł artykułu

Bacterial DNA repair genes and their eukaryotic homologues: 5. The role of recombination in DNA repair and genome stability

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Recombinational repair is a well conserved DNA repair mechanism present in all living organisms. Repair by homologous recombination is generally accurate as it uses undamaged homologous DNA molecule as a repair template. In Escherichia coli homologous recombination repairs both the double-strand breaks and single-strand gaps in DNA. DNA double-strand breaks (DSB) can be induced upon exposure to exogenous sources such as ionizing radiation or endogenous DNA-damaging agents including reactive oxygen species (ROS) as well as during natural biological processes like conjugation. However, the bulk of double strand breaks are formed during replication fork collapse encountering an unrepaired single strand gap in DNA. Under such circumstances DNA replication on the damaged template can be resumed only if supported by homologous recombination. This functional cooperation of homologous recombination with replication machinery enables successful completion of genome duplication and faithful transmission of genetic material to a daughter cell. In eukaryotes, homologous recombination is also involved in essential biological processes such as preservation of genome integrity, DNA damage checkpoint activation, DNA damage repair, DNA replication, mating type switching, transposition, immune system development and meiosis. When unregulated, recombination can lead to genome instability and carcinogenesis.

Wydawca

-

Rocznik

Tom

54

Numer

3

Opis fizyczny

p.483-494,fig.,ref.

Twórcy

  • University of Massachusetts Medical School, 364 Plantation Street, Worcester MA, USA

Bibliografia

  • Amundsen SK (2003) Interchangeable parts of the Escherichia coli recombination machinery Cell 112: 741–744.
  • Anderson DG, Kowalczykowski SC (1997) The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell 90: 77–86.
  • Arczewska K, Kusmierek J (2007) Bacterial DNA repair genes and their eukaryotic homologues: 2. Role of bacterial mutator gene homologues in human disease. Overview of nucleotide pool sanitization and mismatch repair systems. Acta Biochim Polon 54: 435–457.
  • Arnold DA, Kowalczykowski SC (2000) Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme. J Biol Chem 275: 12261–12265.
  • Azam M, Lee JY, Abraham V, Chanoux R, Schoenly KA, Johanson FB (2006) Evidence that the S. cerevisiae Sgs1 protein facilitates recombinational repair of telomeres during senescence. Nucleic Acids Res 34: 506–516.
  • Baharoglu Z, Petranovic M, Flores M-J, Michel B (2006) RuvAB is essential for replication forks reversal in certain replication mutants. EMBO J 25: 596–604.
  • Baharoglu Z, Petranovic M, Flores MJ, Michel B (2006) RuvAB is essential for replication forks reversal in certain replication mutants. EMBO J 25: 596–604.
  • Benson FE, West SC (1994) Substrate specificity of the Escherichia coli RuvC protein. Resolution of three- and four-stranded recombination intermediates. J Biol Chem 269: 5195–201.
  • Bidnenko V, Seigneur M, Penel-Colin M, Bouton MF, Ehrlich SD, Michel B (1999) sbcS sbcC null mutations allow RecF-mediated repair of arrested replication forks in rep recBC mutants. Mol Microbiol 33: 846–857.
  • Boddy MN, Gaillard PH, McDonald WH, Shanahan P, Yates JR 3rd, Russell P (2001) Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107: 537–748.
  • Bork JM, Cox MM, Inman RB (2001) The RecOR proteins modulate RecA protein function at 5’ ends of singlestranded DNA. EMBO J 20: 7313–722.
  • Briggs GS, Mahdi AA, Weller GR, Wen Q, Lloyd RG (2004) Interplay between DNA replication, recombination and repair based on the structure of RecG helicase. Philos Trans R Soc Lond B Biol Sci 359: 49–59.
  • Briggs GS, Mahdi AA, Wen Q, Lloyd RG (2005) Binding by the substrate specificity (wedge) domain of RecG helicase suggests a role in processivity. J Biol Chem 280: 13921–13927.
  • Brill SJ, Stillman B (1991) Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev 5: 1589–1600.
  • Cassuto E (1984) Formation of covalently closed heteroduplex DNA by the combined action of gyrase and RecA protein. EMBO J 3: 2159–2164.
  • Cassuto E, West SC, Howard-Flanders P (1982) Can recA protein promote homologous pairing between duplex regions of DNA? EMBO J 1: 821–825.
  • Chen XB, Melchionna R, Denis CM, Gaillard PH, Blasina A, Van de Weyer I, Boddy MN, Russell P, Vialard J, McGowan CH (2001) Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol Cell 8: 1117–1127.
  • Churchill JJ, Kowalczykowski SC (2000) Identification of the RecA protein-loading domain of RecBCD enzyme. J Mol Biol 297: 537–542.
  • Ciccia A, Constantinou A, West SC (2003) Identification and characterization of the human mus81-eme1 endonuclease. J Biol Chem 278: 25172–25178.
  • Constantinou A, Chen XB, McGowan CH, West SC (2002) Holliday junction resolution in human cells: two junc tion endonucleases with distinct substrate specificities. EMBO J 21: 5577–5585.
  • Courcelle J, Hanawalt PC (2001) Participation of recombination proteins in rescue of arrested replication forks in UV-irradiated Escherichia coli need not involve recombination. Proc Natl Acad Sci USA 98: 8196–8202.
  • Cox MM (2007) Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42: 41–63.
  • Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ (2000) The importance of repairing stalled replication forks. Nature 404: 37–41.
  • Cunningham D, Pembroke JT, Stevens E (1981) cis-Platin um(II)diamminodichloride-induced mutagenesis in E. coli K12: crowding depression of mutagenesis. Mutat Res 84: 273–282.
  • Curth U, Genschel J, Urbanke C, Greipel J (1996) In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic Acids Res 24: 2706–2711.
  • Dao M (1998) Mismatch-, MutS-, MutL-, and helicase II-dependent unwinding from the single-strand break of an incised heteroduplex. J Biol Chem 273: 9202–9207.
  • Digweed M, Sperling K (2004) Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst) 3: 1207–1217.
  • Dillingham MS, Spies M, Kowalczykowski SC (2003) RecBCD enzyme is a bipolar DNA helicase. Nature 423: 893–897.
  • Drablos F, Feyzi E, Aas PA, Vaagbo CB, Kavli B, Bratlie MS, Pena-Diaz J, Otterlei M, Slupphaug G, Krokan HE (2004) Alkylation damage in DNA and RNA-repair mechanisms and medical significance. DNA Repair (Amst) 3: 1389–1407.
  • Drees JC, Lusetti SL, Cox MM (2004b) Inhibition of RecA protein by the Escherichia coli RecX protein — Modulation by the RecA C terminus and filament functional state. J Biol Chem 279: 52991–52997.
  • Eastman A (1983) Characterization of the adducts produced in DNA by cis-diamminedichloroplatinum(II) and cis-dichloro(ethylenediamine)platinum(II). Biochemistry 22: 3927–3933.
  • Eggleston AK, West SC (2000) Cleavage of holliday junctions by the Escherichia coli RuvABC complex. J Biol Chem 275: 26467–26476.
  • Einhorn LH (2002) Curing metastatic testicular cancer. Proc Natl Acad Sci USA 99: 4592–4595.
  • Fichtinger-Schepman AM, van der Veer JL, den Hartog JH, Lohman PH, Reedijk J (1985) Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry 24: 707–713.
  • Flores MJ, Ehrlich SD, Michel B (2002) Primosome assembly requirement for replication restart in the Escherichia coli holDG10 replication mutant. Mol Microbiol 44: 783–792.
  • Flores MJ, Bidnenko V, Michel B (2004) The DNA repair helicase UvrD is essential for replication fork reversal in replication mutants. EMBO Rep 5: 983–988.
  • Flores MJ, Sanchez N, Michel B (2005) A fork-clearing role for UvrD. Mol Microbiology 7: 1664–1675.
  • Fortin GS, Symington LS (2002) Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51–DNA complexes. EMBO J 21: 3160–3170.
  • Frappart PO, McKinnon PJ (2006) Ataxia-telangiectasia and related diseases. Neuromolecular Med 8: 495–511.
  • Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, Washington, D.C.
  • Gaillard PH, Noguchi E, Shanahan P, Russell P (2003) The endogenous Mus81-Eme1 complex resolves Holliday junctions by a nick and counternick mechanism. Mol Cell 12: 747–759.
  • Grompone G, Seigneur M, Ehrlich SD, Michel B (2002) Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp. Mol Microbiol 44: 1331–1339.
  • Hanada K, Hickson ID (2007) Molecular genetics of RecQ helicase disorders. Cell Mol Life Sci 64: 2306–2322.
  • Hanada K, Ukita T, Kohno Y, Saito K, Kato J, Ikeda H (1997) RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc Natl Acad Sci USA 94: 3860–3865.
  • Handa N, Bianco PR, Baskin RJ, Kowalczykowski SC (2005) Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after chi recognition. Mol Cell 17: 745–750.
  • Heller RC, Marians KJ (2005) Unwinding of the nascent lagging strand by Rep and PriA enables the direct restart of stalled replication forks. J Biol Chem 280: 34143– 34151.
  • Heller RC, Marians KJ (2006) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439: 557–562.
  • Heyer WD, Li X, Rolfsmeier M, Zhang XP (2006) Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res 34: 4115–4125.
  • Hiom K, West SC (1995) Branch migration during homologous recombination: assembly of a RuvAB-Holliday junction complex in vitro. Cell 80: 787–793.
  • Hobbs MD, Cox MM (2007) SSB limits RecOR binding onto single strand DNA. J Biol Chem 282: 11058–11067.
  • Jaco I, Muñoz P, Goytisolo F, Wesoly J, Bailey S, Taccioli G, Blasco MA (2003) Role of mammalian Rad54 in telomere length maintenance. Mol Cell Biol 23: 5572–5580.
  • Jasin M (2002) Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21: 8981–8993.
  • Johnson RD, Symington LS (1995) Functional differences and interactions among the putative RecA homologues Rad51, Rad55, and Rad57. Mol Cell Biol 15: 4843–4850.
  • Kaliraman V, Mullen JR, Frickle WM, Bastin-Shanover SA, Brill SJ (2001) Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease. Genes Dev 15: 2730–2740.
  • Kojic M, Yang H, Kostrub CF, Pavletich NP, Holloman WK (2003) The BRCA2-interacting protein DSS1 is vital for DNA repair, recombination, and genome stability in Ustilago maydis. Mol Cell 12: 1043–1049.
  • Kolodner RD (2000) Guarding against mutation Nature 407: 687–689.
  • Koroleva O, Makharashvili N, Courcelle CT, Courcelle J, Korolev S (2007) Structural conservation of RecF and Rad50: implications for DNA recognition and RecF function. EMBO J 26: 867–877.
  • Kowalczykowski SC (2000) Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci 25: 156–165.
  • Kowalczykowski SC, Clow J, Somani R, Varghese A (1987) Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein-protein interaction. J Mol Biol 193: 81–95.
  • Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58: 401.
  • Krwawicz J, Arczewska K, Speina E, Maciejewska A, Grzesiuk E (2007) Bacterial DNA repair genes and their eukaryotic homologues: 1. Mutations in genes involved in base excision repair (BER) and DNA end-processors and their implication in mutagenesis and human disease. Acta Biochim Polon 54: 413–434.
  • Kuzminov A (1999) Recombinational repair of DNA damaged in Escherichia coli and bacteriophage λ. Microbiol Mol Biol Rev 63: 751–813, table of contents.
  • Lahue RS, Au KG, Modrich P (1989) DNA mismatch correction in a defined system. Science 245: 160–164.
  • Lavery PS, Kowalczykowski SC (1990) Properties of recA441 protein-catalyzed DNA strand exchange can be attributed to an enhanced ability to compete with SSB protein. J Biol Chem 265: 4004–4010.
  • Little JW (1991) Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73: 411–241.
  • Liu J, Marians K (1999) PriA-directed assembly of a primosome on D loop DNA. J Biol Chem 274: 25033–25041.
  • Liu Y, West SC (2004) Happy Hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol 5: 937–944.
  • Lloyd RG, Sharples GJ (1991) Molecular organization and nucleotide sequence of the recG locus of Escherichia coli K-12. J Bacteriol 173: 6837–6843.
  • Lloyd RG, Sharples GJ (1993) Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli. Nucleic Acids Res 21: 1719–1725.
  • Lohman TM, Bujalowski W (1994) Effects of base composition on the negative cooperativity and binding mode transitions of Escherichia coli SSB-single-stranded DNA complexes. Biochemistry 33: 6167–6176.
  • Lovett ST, Kolodner RD (1989) Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci USA 86: 2627–2631.
  • Lovett ST, Sutera VA (1995) Suppression of recJ exonuclease mutants of Escherichia coli by alterations in DNA helicases II (UvrD) and IV (HelD). Genetics 140: 27–45.
  • Luisi-DeLuca C, Kolodner R (1994) Purification and characterization of the Escherichia coli RecO protein. Renaturation of complementary single-stranded DNA molecules catalyzed by the RecO protein. J Mol Biol 236: 124–138.
  • Lusetti SL, Voloshin ON, Inman RB, Camerini-Otero RD, Cox MM (2004) The DinI protein stabilizes RecA protein filaments. J Biol Chem 279: 30037–30046.
  • Lusetti SL, Hobbs MD, Stohl EA, Chitteni-Pattu S, Inman RB, Seifert HS, Cox MM (2006) The RecF protein antagonizes RecX function via direct interaction. Mol Cell 21: 41–50.
  • Maddukuri L, Dudzińska D, Tudek B (2007) Bacterial DNA repair genes and their eukaryotic homologues: 4. The role of nucleotide excision DNA repair (NER) system in mammalian cells. Acta Biochim Polon 54: 469–482.
  • Mathew CG (2006) Fanconi anemia genes and susceptibility to cancer. Onkogene 25: 5875–5884.
  • Matson SW (1986) Escherichia coli helicase II (urvD gene product) translocates unidirectionally in a 3’ to 5’ direction. J Biol Chem 261: 10169–10175.
  • McGlynn P, Lloyd RG (1999) RecG helicase activity at three- and four-strand DNA structures. Nucleic Acids Res 27: 3049–3056.
  • McGlynn P, Lloyd RG (2000) Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101: 35–45.
  • McGlynn P, Lloyd RG (2001) Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation. Proc Natl Acad Sci USA 98: 8227–8234.
  • McGlynn P, Mahdi AA, Lloyd RG (2000) Characterisation of the catalytically active form of RecG helicase. Nucleic Acids Res 28: 2324–2332.
  • McGlynn P, Lloyd RG, Marians KJ (2001) Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci USA 98: 8235–8240.
  • Meddows TR, Savory AP, Grove JI, Moore T, Lloyd RG (2005) RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Mol Microbiol 57: 97–110.
  • Mendonca VM, Kaiser-Rogers K, Matson SW (1993) Double helicase II (uvrD)-helicase IV (helD) deletion mutants are defective in the recombination pathways of Escherichia coli. J Bacteriol 175: 4641–4651.
  • Meyer RR, Laine PS (1990) The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev 54: 342–380.
  • Michel B, Flores MJ, Viguera E, Grompone G, Seigneur M, Bidnenko V (2001) Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci USA 98: 8181–8188.
  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W et. al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71.
  • Mizukoshi T, Tanaka T, Arai K, Kohda D, Masai H (2003) A critical role of the 3’ terminus of nascent DNA chains in recognition of stalled replication forks. J Biol Chem 278: 42234–42239.
  • Morimatsu K, Kowalczykowski SC (2003) RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11: 1337–1347.
  • Mortenson UH, Bendixen C, Sunjevaric I, Rothstein R (1996) DNA strand annealing is promoted by the yeast Rad52 protein. Proc Natl Acad Sci USA 93: 10729–10734.
  • Nagashima K, Kubota Y, Shibata T, Sakaguchi C, Shinagawa H, Hishida T (2006) Degradation of Escherichia coli RecN aggregates by ClpXP protease and its implications for DNA damage tolerance. J. Biol Chem 281: 30941–30946.
  • New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC (1998) Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391: 407–410.
  • Nieminuszczy J, Grzesiuk E (2007) Bacterial DNA repair genes and their eukaryotic homologues: 3. AlkB dioxygenase and Ada methyltransferase in the direct repair of alkylated DNA. Acta Biochim Polon 54: 459–468.
  • Nowosielska A, Calmann MA, Zdraveski Z, Essigmann JM, Marinus MG (2004) Spontaneous and cisplatininduced recombination in Escherichia coli. DNA Repair (Amst) 3: 719–728.
  • Nowosielska A, Marinus MG (2005) Cisplatin induces DNA double-strand break formation in Escherichia coli dam mutants. DNA Repair (Amst) 12: 773–781.
  • Nowosielska A, Marinus MG (2007) DNA mismatch repair-induced double-strand breaks. DNA Repair (Amst) (Epub ahead of print).
  • Nowosielska A, Smith SA, Engelward BP, Marinus MG (2006) Homologous recombination prevents methylation-induced toxicity in Escherichia coli. Nucleic Acids Res 34: 2258–2268.
  • Oakley TJ, Hickson ID (2002) Defending genome integrity during S-phase: putative roles for RecQ helicases and topoisomerase III DNA Repair (Amst) 1: 175–207.
  • Ogawa T, Yu X, Shinohara A, Egelman EH (1993) Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259: 1896–1899.
  • Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (2002) Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277: 41110–41119.
  • Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63: 349–404.
  • Pazin MJ, Kadonaga JT (1997) SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 88: 737–740.
  • Petranovic M, Zahradka K, Zahradka D, Petranovic D, Nagy B, Salaj-Smic E (2001) Genetic evidence that the elevated levels of Escherichia coli helicase II antagonize recombinational DNA repair. Biochimie 83: 1041–1047.
  • Pham P, Seitz EM, Saveliev S, Shen X, Woodgate R, Coc MM, Goodman MF (2002) Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis. Proc Natl Acad Sci USA 99: 11061–11066.
  • Pinto AL, Lippard SJ (1985) Binding of the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin) to DNA. Biochim Biophys Acta 780: 167–180.
  • Rangarajan S, Woodgate R, Goodman MF (2002) Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins. Mol Microbiol 43: 617–628.
  • Reddy G, Golub EI, Radding CM (1997) Human Rad52 protein promotes single-strand DNA annealing followed by branch migration. Mutat Res 377: 53–59.
  • Rostas K, Morton SJ, Picksley SM, Lloyd RG (1987) Nucleotide sequence and LexA regulation of the Escherichia coli recN gene. Nucleic Acids Res 15: 5041–5049.
  • Runyon GT, Bear DG, Lohman TM (1990) Escherichia coli helicase II (UvrD) protein initiates DNA unwinding at nicks and blunt ends. Proc Natl Acad Sci USA 87: 6383–6387.
  • Sandler SJ (1996) Overlapping functions for recF priA in cell viability and UV-inducible SOS expression are distinguished by dnaC809 in Escherichia coli K-12. Mol Microbiol 19: 871–880.
  • Sandler SJ (2000) Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics 155: 487–497.
  • Sandler SJ, Clark AJ (1994) Mutational analysis of sequences in the recF gene of Escherichia coli K-12 that affect expression. J Bacteriol 176: 4011–4016.
  • Sandler SJ, McCool JD, Do TT, Johansen RU (2001) PriA mutations that affect PriA-PriC function during replication restart. Mol Microbiol 41: 697–704.
  • Schlacher K, Cox MM, Woodgate R, Goodman MF (2006) RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature 442: 883–887.
  • Seigneur M, Bidnenko V, Ehrlich SD, Michel B (1998) RuvAB acts at arrested replication forks. Cell 95: 419–430.
  • Seigneur M, Ehrlich SD, Michel B (2000) RuvABC-dependent double-strand breaks in dnaBts mutants require recA. Mol Microbiol 38: 565–574.
  • Shan Q, Cox MM (1996) RecA protein dynamics in the interior of RecA nucleoprotein filaments. J Mol Biol 257: 756–774.
  • Shan Q, Cox MM (1997) RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J Mol Biol 265: 519–540.
  • Sharma S, Doherty KM, Brosh RM Jr. (2006) Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 398: 319–337.
  • Sharples GJ, Bolt EL, Lloyd RG (2002) RusA proteins from the extreme thermophile Aquifex aeolicus and lactococcal phage r1t resolve Holliday junctions. Mol Microbiol 44: 549–559.
  • Shinohara A, Ogawa T (1998) Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391: 404–407.
  • Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69: 457–470.
  • Shinohara A, Shinohara M, Ohta T, Matsuda S, Ogawa T (1998) Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3: 145–156.
  • Story RM, Weber IT, Steitz TA (1992) The structure of the E. coli RecA protein monomer and polymer. Nature 355: 318–325.
  • Sugiyama T, New JH, Kowalczykowski SC (1998) DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci USA 95: 6049–6054.
  • Sung P (1997) Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11: 1111–1121.
  • Sung P, Krejci L, Van Komen S, Sehorn MG (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278: 42729–42732.
  • Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66: 630–670.
  • Tang MJ, Shen X, Frank EG, O’Donnell M, Woodgate R, Goodman MF (1999) UmuD‘(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci USA 96: 8919–8924.
  • Tarsounas M, Munoz P, Claas A, Smiraldo PG, Pittman DL, Blasco MA, West SC (2004) Telomere maintenance requires the RAD51D recombination/repair protein. Cell 117: 337–347.
  • Taylor A, Smith GR (1980) Unwinding and rewinding of DNA by the RecBC enzyme. Cell 22 (Pt 2): 447–457.
  • Taylor AF, Smith GR (2003) RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature 423: 889–893.
  • Tsaneva IR, Illing G, Lloyd RG, West SC (1992) Purification and properties of the RuvA and RuvB proteins of Escherichia coli. Mol Gen Genet 235: 1–10.
  • Umezu K, Kolodner RD (1994) Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J Biol Chem 269: 30005–30013.
  • Van Komen S, Reddy MS, Krejci L, Klein H, Sung P (2003) ATPase and DNA helicase activities of the Saccharomyces cerevisiae anti-recombinase Srs2. J Biol Chem 278: 44331–44337.
  • Veaute X, Delmas P, Selva M, Jeusset J, Cam ELe, Matic I, Fabre F, Petit MA (2005) UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24: 180–189.
  • Webb BL, Cox MM, Inman RB (1999) ATP hydrolysis and DNA binding by the Escherichia coli RecF protein. J Biol Chem 274: 15367–15374.
  • West SC (1997) Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet 31: 213–244.
  • West SC (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4: 435–445.
  • Wolner B, van Komen S, Sung P, Peterson CL (2003) Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol Cell 12: 221–232.
  • Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378: 789–792.
  • Yang H, Jeffrey PD, Miller J, Kinnucan E, Sun Y, Thoma NH, Zheng N, Chen PL, Lee WH, Pavletich NP (2002) BRCA2 function in DNA binding and recombination from a BRCA2–DSS1–ssDNA structure. Science 297: 1837–1848.
  • Zdraveski ZZ, Mello JA, Marinus MG, Essigmann JM et al. (2000) Multiple pathways of recombination define cellular responses to cisplatin. Chem Biol 7: 39–50.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-49ea8991-8b75-429e-8bac-34be88b93eaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.