PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 57 | 4 |

Tytuł artykułu

Effect of high hydrostatic pressure on the structure and gelling properties of amylopectin starches

Treść / Zawartość

Warianty tytułu

PL
Wplyw wysokiego cisnienia na wlasciwosci i mikrostrukture zeli skrobi amylopektynowych

Języki publikacji

EN

Abstrakty

EN
Waxy maize starch (APM), amylopectin wheat (APW) and amylopectin potato (APP) starches were subjected to high pressure treatment (650 MPa/9 min) in the excess of water. High sensitivity differential scanning microcalorimetry (HSDSC) and 1H-NMR spectroscopy were used to analyse changes in the crystalline structure, gelling and osmotic properties of the pressurized starches. High pressure-treated APM and APW starches demonstrated almost complete gelatinisation of granules (GD=86% and GD=90%, respectively) and significant changes in their crystalline structure (melting of the A-type crystallites). Whereas, the degree of gelatinization of the “pressurised” APP starch accounted for 54%. The measurements of relaxation time constants (T2) of water molecules in pressurized starch gels showed two different relaxations (46–720 ms and 8–120 ms). The complex relaxation of water molecules resulted directly from their different mobility that was triggered by differences in the structure of pressurized starch gels. These differences, i.e. ratio of swollen elements (granule remnants) to the non-swollen elements (crystalline, ordered structures), significantly affected not only the relaxation of water molecules in the gels but also determined their swelling index. The high pressure-treated starches after rehydration formed a gel structure that revealed low values of a swelling index.
PL
Skrobie: woskową kukurydzianą (APM), amylopektynową pszenną (APW) i amylopektynową ziemniaczaną (APP) poddano działaniu wysokiego ciśnienia (650 MPa/9 min) w nadmiarze wody. Strukturę krystaliczną natywnych i presuryzowanych skrobi, ich zdolności żelowania i właściwości osmotyczne badano przy użyciu wysokoczułej różnicowej mikrokalorymetrii skaningowej (HSDSC) i spektroskopii 1H -NMR. Skrobie APM i APW poddane działaniu ciśnienia hydrostatycznego, wykazały wysoki stopień skleikowania ziarenek (odpowiednio, GD=86% i GD=90%) i znaczące zmiany w ich strukturze krystalicznej (topnienie krystalitów typu A). Stopień skleikowania ziarenek presuryzowanej skrobi APP wynosił jedynie 54%. Pomiary stałej czasu relaksacji cząsteczek wody w presuryzowanych żelach skrobiowych wykazały dwie różne relaksacje (46–720 ms i 8–120 ms). O złożonych czasach relaksacji cząsteczek wody decydowały różnice w ich mobilności, które bezpośrednio wynikały z różnej struktury badanych żeli, tj. stosunku elementów pęczniejących (pozostałości ziarenek) do elementów niepęczniejacych (struktury krystaliczne). Różnice te wpływały istotnie nie tylko na relaksację cząsteczek wody ale także decydowały o sile pęcznienia rehydratowanych żeli. Stwierdzono, że skrobie amylopektynowe poddane presuryzacji, tworzyły żele, które po rehydratacji wykazały niskie wartości indeksu pęcznienia.

Wydawca

-

Rocznik

Tom

57

Numer

4

Opis fizyczny

p.475-480,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
autor
autor

Bibliografia

  • 1. Andreev N.R., Kalistratova E.N., Wasserman L.A., Yuryev V.P., The influence of heating rate and annealing on the melting thermodynamic parameters of some cereal starches in excess water. Starch/Stärke, 1999, 51, 422–429.
  • 2. Bertoft E., Lintnerization of two amylose-free starches of A- and B- crystalline types, respectively. Starch, 2004, 56, 167–180.
  • 3. Blaszczak W., Valverde S., Fornal J., Effect of high pressure on the structure of potato starch. Carbohydr. Polym., 2005a, 59, 377–383.
  • 4. Blaszczak W., Fornal J., Valverde S., Garrido L., Pressureinduced changes in the structure of corn starches with different amylose content. Carbohydr. Polym., 2005b, 61, 132–140.
  • 5. Błaszczak W., Fornal J., Kisieleva V.I., Yuryev V.P. Sergeev I., Sadowska J., Effect of high pressure on thermal, structural and osmotic properties of waxy maize and Hylon VII starch blends. Carbohydr. Polym., 2007, article in press.
  • 6. Blennow A., Strategies for engineering phosphate substitution of starch in the plant. 2004, in: Starch: Progress in Structural Studies, Modifications and Applications (eds. P. Tomasik, V.P. Yuryev, E. Bertoft). Polish Society of Food Technologists’ Malapolska Branch, Kraków, pp. 27–43.
  • 7. Bocharnikova I.I., Wasserman L.A., Krivandin A.V., Fornal J., Błaszczak W., Chernykh V.Ya., Schiraldi A., Yuryev V.P., Structure and thermodynamic melting parameters of wheat starches with different amylose content. J. Therm. Anal. Calorim., 2003, 74, 681–695.
  • 8. Carr H.Y., Purcell E.M., Effects of diffusion on free precession in nuclear Magnetic Resonance experiments. Phys. Rev., 1954, 94, 630–638.
  • 9. Choi S.G., Kerr W.L., Water mobility and textural properties of native and hydroxypropylated wheat starch gels. Carbohydr. Polym., 2003, 51, 1–8.
  • 10. Danilenko A.N., Shtikova Ye.V., Yuryev V.P., Equilibrium and cooperative unit of the melting process of native starches with different packing of the macromolecules chains in the crystallites. Biophysics, 1994, 39, 427–432.
  • 11. German M.L., Blumenfeld A.L., Yuriev V.P., Tolstoguzov V.B., An NMR study of structure formation in maltodextrin systems. Carbohydr. Polym., 1989, 11, 139–146.
  • 12. German M.L., Blumenfeld A.L., Guenin Ya.V., Yuryev V.P., Tolstoguzov V.B., Structure formation in systems containing amylose, amylopectin, and their mixtures. Carbohydr. Polym., 1992, 18, 27–34.
  • 13. Gienkina N.K., Kisielieva V.I., Wasserman L.A., Yuryev V.P., Evaluation and classification of starch crystalline imperfection through annealing. Retrospective analysis. 2004, in: Starch Progress in Structural Studies, Modifications and Applications (eds. P. Tomasik, V.P. Yuryev, E. Bertoft). Polish Society of Food Technologists’ Malapolska Branch, Kraków, pp. 115–134.
  • 14. Gidley M.J., Bulpin P.V., Aggregation of amylose in aqueous systems: The effect of chains length on phase behavior and aggregation kinetics. Macromolecules, 1989, 22, 341–346.
  • 15. Graybosch, R.A., Waxy wheats: Origin, properties and prospects. Trends Food Sci. Technol., 1998, 9, 135–142.
  • 16. Jane J.L., Atchokudomchai N., Suh D.S., Internal structures of starch granules revealed by confocal laser-light scanning microscopy. 2004, in: Starch Progress in Structural Studies, Modifications and Applications (eds. Piotr Tomasik, Vladimir P. Yuryev, Eric Bertoft). Polish Society of Food Technologists’, Malopolska Branch, Kraków, pp. 147–156.
  • 17. Matveev Y.I., van Soest J.J.G., Nieman C., Wasserman L.A., Protserov V.A., Ezernitskaja M., Yuryev V.P., The relationship between thermodynamic and structural properties of low and high amylose starches. Carbohydr. Polym., 2001, 44, 151–160.
  • 18. Meibom A., Gill D., Modified Spin-Echo Method for measuring nuclear relaxation times. Rev. Sci. Instr., 1958, 29, 688–691.
  • 19. Ortega-Ojeda F.E., Larsson H., Eliasson A.Ch., Gel formation in mixtures of high amylopectin potato starch and potato starch. Carbohydr. Polym., 2004a, 56, 505–514.
  • 20. Ortega-Ojeda F.E., Larsson H., Eliasson A.Ch., Gel formation in mixtures of amylose and high amylopectin potato starch. Carbohydr. Polym., 2004b, 57, 55–66.
  • 21. Sanderson J.S., Daniels R.D., Donald A.M., Blennow A., Engelsen S.B., Exploratory SAXS and HPAEC-PAD studies of starches from diverse plant genotypes. Carbohydr. Polym., 2006, 64, 433–443.
  • 22. Singh N., Inouchi N., Nishinari K., Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocolloid, 2006, 20, 923–935.
  • 23. Srichuwong S., Sunarti T.C. Mishima T., Isono N., Hisamatsu M., Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties. Carbohydr. Polym., 2005, 62, 25–34.
  • 24. Stolt, M. Stoforos N.G. Taoukis P.S., Autio K., Evolution and modeling of rheological properties of high pressure treated waxy maize starch dispersion. J. Food Eng., 1999, 40, 293–298.
  • 25. Stolt M., Oinonen S., Autio, K. Effect of high pressure on the physical properties of barley starch. Innov. Food Sci. Emerg. Technol., 2001, 1, 167–175.
  • 26. Stute R., Klingler R.W., Boguslawski S., Eshtiaghi M.N., Knorr D., Effect of high pressures treatment on starches. Starch/Starke, 1996, 48, 399–408.
  • 27. Svergamrk K., Hermansson A.M., Distribution of amylose and amylopectin in potato starch pastes: Effect of heating and shearing. Food Structure, 1991, 10, 117–129.
  • 28. Thompson D.B., On the non-random nature of amylopectin branching. Carbohydr. Polym., 2000, 43, 223–239.
  • 29. Van Hung P., Maeda T., Morita N., Waxy and high-amylose wheat starches and flours-characteristics, funcitionality and application. Trends Food Sci. Tech., 2006, 17, 448–456.
  • 30. Wang T.L., Bogracheva T.Ya., Hedley C.L., Starch: as simple as A, B, C? J. Exp. Bot., 1998, 49, 481–502.
  • 31. Wang X., Choi S.G., Kerr W.L., Water dynamics in white bread and starch gels as affected by water and gluten content. LWT – Food Sci. Tech., 2004, 37, 377–384
  • 32. Yuryev V.P., Wasserman L.A., Andreev N.R., Tolstoguzov V.B., Structural and thermodynamic features of low- and high amylose starches. A review. 2002, in: Starch and Starch Containing Origins (eds. V.P. Yuryev, A. Cesaro, W.J. Bergthaller). Nova Science Publisher, Inc., New York, pp. 23–55.
  • 33. Zobel H.F., Stephen A.M., Starch: structure, analysis and application. 1995, in: Food Polysaccharides and Their Application (ed. A.M. Stephen). Marcel Dekker, New York, pp. 19–55.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-3a784eb3-87b2-44ce-aac9-13720db5726d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.