PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 78 | 2 |

Tytuł artykułu

The effects of temperature on the dormancy and germination of Cirsium arvense [L.] Scop. seeds

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The ecophysiological regulation of seed dormancy in perennial species and those with a varied life cycle has not been studied in detail yet. That is why an attempt has been made to determine the Cirsium arvense seed water relations during stratification and afterripening at different temperatures and germination at constant or fluctuating temperatures on the basis of the hydrotime model. The obtained results showed that breaking of the primary dormancy of achenes took place only during the first stratification month at moderate temperatures, mainly due to an increase in the average water-stress tolerance in a seed population. The induction of secondary seed dormancy during after-ripening at all temperatures resulted mostly from a substantial loss of the seeds' ability to tolerate water stress. Fluctuating temperatures affected neither seed germination nor the hydrotime model parameters. The analysis of the variations of hydrotime model parameters allows a better understanding of the physiological basis of seed dormancy relief and induction.

Wydawca

-

Rocznik

Tom

78

Numer

2

Opis fizyczny

p.105-114,fig.,ref.

Twórcy

autor
  • University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
autor

Bibliografia

  • ALVARADO V., BRADFORD K.J. 2005. Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds. Seed Sci. Res. 15: 77-88.
  • BAIR B.B., MEYER S.E., ALLEN P.S. 2006. A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. Seed Sci. Res. 16: 17-28.
  • BATLLA D., BENECH-ARNOLD R.L. 2004. A predictive model for dormancy loss in Polygonum aviculare L. seeds based on changes in population hydrotime parameters. Seed Sci. Res. 14: 277-286.
  • BASKIN J.M., BASKIN C.C. 1983. Seasonal changes in the germination responses of buried seeds of Arabidopsis thaliana and ecological interpretation. Bot. Gazette 144: 540-543.
  • BASKIN J.M., BASKIN C.C. 1989. Physiology of dormancy and germination in relation to seed bank ecology. In: Ecology of soil seed banks. Leck M.A. Parker W.T., Simpson M.I. (eds). Academic Press. London pp. 53-66.
  • BASKIN J.M., BASKIN C.C. 1992. Role temperature and light in the germination ecology of buried seeds of weed species of distributed forests. I. Lobelia inflata. Can. J. Bot. 70: 589-592.
  • BASKIN J.M., BASKIN C.C. 2004. A classification system for seed dormancy. Seed Sci. Res. 14: 1-16.
  • BENECH-ARNOLD R.L., SANCHEZ R.A. 1995. Modeling weed seed germination. In: Seed development and germination. Kigel J., Galili G. (eds). Marcel Dekker, Inc. New York, Basel, Hong Kong, pp. 545-566.
  • BENECH-ARNOLD R.L., SÁNCHEZ R.A., FORCELLA F., KRUK B.C., GHERSA C.M. 2000. Environmental control of dormancy in weed seed banks in soil. Field Crops Res. 67: 105-122.
  • BOCHENEK A., GIEŁWANOWSKA I. 2006. Effect of temperature, desiccation, nitrate and light on the seasonal dormancy pattern expression of Cirsium arvense (L.) Scop. achenes. Zesz. Prob. Post. Nauk Rol. 509. 61-74.
  • BOCHENEK A., GOŁASZEWSKI J., GÓRECKI R.J. 2007. The seasonal dormancy pattern and germination of Matricaria marítima subsp. inodora (L.) Dostal seeds in hydrotime model terms. Acta Soc. Bot. Pol. 76: 299-307.
  • BOCHENEK A., GIEŁWANOWSKA I., ŻUK-GOŁASZEWSKA K. 2008. Effect of environmental conditions on germination and persistence of Taraxacum officinale seeds in a soil bank. Zesz. Prob. Post. Nauk Rol. 524: 463-476.
  • BOURDÔT G.W. HURRELL G.A., SAVILLE D.J., LEATH- WICK D.M. 2006. Impacts of applied Sclerotinia sclerotiorum on the dynamics of a Cirsium arvense population. Weed Res. 46: 61-72.
  • BOUWMEESTER H.J. 1990. The effect of environmental conditions on the seasonal dormancy pattern of weed seeds. Ph.D. thesis, Agricultural University in Wageningen, pp. 5-156.
  • BOUWMEESTER H.J., KARSSEN C.M. 1992. The dual role of temperature in the regulation of the seasonal changes in dormancy and germination of seeds of Polygonum persicaria L. Oecologia 90: 88-94.
  • BRADFORD K.J. 1990. A water relation analysis of seed germination rates. Plant Physiol. 94: 840-849.
  • BRADFORD K.J. 1995. Water relation in seed germination. In: Seed development and germination. Kigel J. and Galili G. (eds). Marcel Dekker, New York, pp. 351-396.
  • BRADFORD K.J. 1996. Population-based models describing seed dormancy behaviour: implications for experimental design and interpretation. In: Plant dormancy: physiology, biochemistry and molecular biology. Lang G.A. (ed.). CAB International, Wallingford, pp. 313-339.
  • BRADFORD K.J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50: 248-260.
  • BRADFORD K.J., SOMASCO O.A. 1994. Water relations of lettuce seed thermoinhibition. I. Priming and endosperm effects on base water potential. Seed Sci. Res. 4: 1-10.
  • CHRISTENSEN M., MEYER S.E., ALLEN P.S. 1996. A hydrothermal time model of seed after-ripening in Bromus tectorum. Seed Sci. Res. 6: 155-163.
  • CHRISTENSEN BAUER M., MEYER S.E., ALLEN P.S. 1998. A simulation model to predict seed dormancy loss in the field for Bromus tectorum L. J. Exp. Bot. 49: 1235-1244.
  • DONALD W.W. 1990. Management and control of Canada thistle (Cirsium arvense). Rev. Weed Sci. 5: 193-249.
  • EDWARDS G.R., BOURDOT G.W., CRAWLEY M.J. 2000. Influence of herbivory, competition and soil fertility on the abundance of Cirsium arvense in acid grassland. J. App. Ecol. 37: 321-334.
  • FINCH-SAVAGE W.E., LEUBNER-METZGER G. 2006. Seed dormancy and the control of germination. New Phytol. 171: 501-52
  • FRIEDLI J., BACHER S. 2001. Direct and indirect effects of s shoot-base boring weevil and plant competition on the performance of creeping thistle, Cirsium arvense. Biol. Control 22: 219-226.
  • GOŁASZEWSKI J., BOCHENEK A. 2008. A computational procedure for hydrotime concept of seed germination. Biom. Let. 45: 55-67.
  • GRAGLIA E., MELANDER B., JENSEN R.K. 2006. Mechanical and cultural strategies to control Cirsium arvense in organic arable cropping systems. Weed Res. 46: 304-312.
  • GUMMERSON R.J. 1986. The effect of constant temperatures and osmotic potential on the germination of sugar beet. J. Exp. Bot. 37: 729-741.
  • GUSKE S., SCHULZ B., BOYLE C. 2004. Biocontrol options for Cirsium arvense with indigenous fungal pathogens. Weed Res. 44: 107-116.
  • HEIMANN B., CUSSANS G.W. 1996. The importance of seeds and sexual reproduction in the population biology of Cirsium arvense - a literature review. Weed Res. 36: 495-503.
  • HETTWER U., GEROWITT B. 2004. An investigation of genetic variation in Cirsium arvense field patches. Weed Res. 44: 289-297.
  • HUARTE R. 2006. Hydrotime analysis of the effect of fluctuating temperatures on seed germination in several non-cultivated species. Seed Sci. Technol. 34: 533-547.
  • HUARTE R., BENECH-ARNOLD R.L. 2005. Incubation under fluctuating temperatures reduces mean base water potential for seed germination in several non-cultivated species. Seed Sci. Res. 15: 89-97.
  • JUMP A.S., WOODWARD F.I., BURKE T. 2003. Cirsium species show disparity in patterns of genetic variations at their range-edge, despite similar patterns of reproduction and isolation. New Phytol. 160: 359-370.
  • KARSSEN C.M., DERKX P.M., POST B.J. 1988. Study of seasonal variation in dormancy of Spergula arvensis L. seeds in a condensed annual temperature cycle. Weed Res. 28: 449-457.
  • KRUK B.C., BENECH-ARNOLD R.L. 2000. Evaluation of dormancy and germination responses to temperature in Carduus acanthoides and Anagallis arvensis using a screening system, and relationship with field-observed emergence patterns. Seed Sci. Res. 10: 77-88.
  • KUMAR V., IRVINE D.E.G. 1971. Germination of seeds of Cirsium arnense (L.) Scop. Weed Res. 11: 200-203.
  • LARSEN S.U., BAILLY C., COME D., CORBINEAU F. 2004. Use of the hydrothermal time model to analyse interacting effects of water and temperature on germination of three grass species. Seed Sci. Res. 14: 35-50.
  • MEYER S.E., DEBAENE-GILL S.B., ALLEN P.S. 2000. Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss and priming effects in Elymus elymoides. Seed Sci. Res. 10: 213-223.
  • MICHEL B.E. 1983. Evaluation of the water potentials of solutions of the polyethylene glycol 8000 both in the absence and presence other solutes. Plant Physiol. 72: 66-70.
  • PONS T.L. 2000. Seed responses to light. In: Seeds - the ecology in plant communities. Fenner M. (ed.). CAB International, Wallingford, pp. 237-260.
  • PROBERT R.J. 2000. The role of temperature in regulation of seed dormancy and germination. In: Seeds - the ecology in plant communities. Fenner M. (ed.). CAB International, Wallingford, pp. 261-292.
  • SKINNER K., SMITH L., RICE P. 2000. Using noxious weed lists to prioritize targets for developing weed management strategies. Weed Sci. 48: 640-644.
  • TOSELLI M.E., CASENAVE E.C. 2002. The hydrotime model analysis of cottonseed germination as tool in priming. Seed Sci. Technol. 30: 549-557.
  • TOSELLI M.E., CASENAVE E.C. 2005. Hydropriming and cottonseed germination under unfavorable conditions: modifications in hydrotime parameters. Seed Sci. Technol. 33: 87-96.
  • WANG R., BAI Y., TANINO K. 2005. Germination of winterfat (Eurotia lanata (Pursh) Moq.) seeds at reduced water potentials: testing assumptions of hydrothermal time model. Environ. Exp. Bot. 53: 49-63.
  • ŻUK-GOŁASZEWSKA K., BOCHENEK A., GOŁASZEWSKI J. 2007. Effect of scarification on seed germination of red clover in hydrotime model terms. Seed Sci. Technol. 35: 326-336.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-3330a2ea-3865-4187-a2f9-23da78a6eb15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.