PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 08 | 1 |

Tytuł artykułu

Cystocyte and lymphocyte derived fusomes-spectrosomes: analogies and differences: a mini-review

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Structures analogous to Drosophila spectrosomes were found in mammalian lymphocytes. Repasky and colleagues discovered an intracellular spectrin-rich structure in lymphoid cells, which had far-reaching parallels with the fusome/spectrosome of D. melanogaster germ cells. This fact implies that spectrosomes may be characteristic not only of insect germ cells, but also that an analogous structure may play an important role in other cell types. The term “spectrosome” was first used by Lin and Spradling in 1995 to describe a large sphere of fusomal material in D. melanogaster germline stem cells and their differentiated daughter cells - cytoblasts. In the D. melanogaster ovary, membrane skeletal proteins such as ankyrin, α/β spectrin as well as adducin-like Hts protein(s) were found in this specific organelle - spectrosome/fusome. These organelles are involved in the creation of mitotic spindles and D. melanogaster cyst formation and oocyte differentiation, but the role of analogous spectrin based aggregates found in nucleated cells still remains unclear.

Wydawca

-

Rocznik

Tom

08

Numer

1

Opis fizyczny

p.221-229,fig.

Twórcy

  • University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
autor
autor

Bibliografia

  • 1.Broderic, M.J. and Winder, S.J. Towards a complete atomic structure of spectrin family proteins. J. Struct. Biol. 137 (2002) 184-193.
  • 2.Dijnovic-Carugo, K., Gautel, M., Ylanne, J. and Young, P. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 513 (2002) 119-123.
  • 3.Park, S., Johnson, M.E. and Fung, L.W. Nuclear magnetic resonance studies of mutations at the tetramerisation region of human alpha spectrin. Blood 100 (2002) 283-288.
  • 4.Tang, Y., Katuri, V., Dillner, A., Mishra, B., Deng, C.X. and Mishra, L. Disruption of transforming growth factor-β signalling in ELF β-spectrin deficient mice. Science 299 (2003) 574-577.
  • 5.Siddhanta, A., Radulescu, A., Stankiewich, M.C., Morrow, J.S. and Shields, D. Fragmentation of the Golgi Aparatus. A role for βIII spectrin and synthesis of phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 278 (2003) 1957-1965.
  • 6.Pradhan, D. and Morrow J. The spectrin-ankyrin skeleton controls CD45 surface display and interleukin-2 production. Immunity 17 (2002) 303-315.
  • 7.Xu, J., Ziemnicka, D., Merz, G.S. and Kotula, L. Human spectrin Src homology 3 domain binding protein 1 regulates macropinocytosis in NIH 3T3 cells. J. Cell Sci. 113 (2002) 3805-3814.
  • 8.Lemmon, M.A., Ferguson, K.M. and Abrams, C.S. Pleckstrin homology domain and the cytoskeleton. FEBS Lett. 513 (2002) 71-76.
  • 9.Abrams, C.S., Zhao, W., Belmonte, E. and Brass, L.F. Protein kinase C regulates pleckstrin by phosphorylation of sites adjacent to the N-terminal pleckstrin homology domain. J. Biol. Chem. 270 (2002) 23317-23321.
  • 10.Bennett, V. and Baines, A.J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 81 (2001) 1353-1392.
  • 11.De Matteis, M.A. and Morrow, J.S., Spectrin tethers and mesh in the biosynthetic pathway. J.Cell Sci. 113 (2000) 2331-2343.
  • 12.Janmey, P.A. The cytoskeleton and cell signalling: Component localisation and mechanical coupling. Physiol. Rev. 78 (1998) 765-781.
  • 13.Ziemnicka-Kotula, D., Xu, J., Gu, H., Potempska, A., Kim, Ks., Jenkins, E.C., Trencher, E. and Kettle, L. Identification of a candidate human spectrin Src homology 3 domain-binding protein suggests a general mechanism of association of tyrosine kinases with the spectrin-based membrane skeleton. J. Biol. Chem. 273 (1998) 13681-13692.
  • 14.Discher, D.E. and Carl, P. New insights into red cell network structure, elasticity and spectrin unfolding - A current review. Cell. Moll. Biol. Lett. 6 (2001) 593-606.
  • 15.Yao, L., Suzuki, H., Ozawa, K., Deng, J., Lehel, C., Fukamachi, H., Anderson, W.B., Kawakami, Y. and Kawakami, T. Interactions between protein kinase C and pleckstrin homology domain. J. Biol. Chem. 272 (1997) 13033-13039.
  • 16.Bennett, V., Davis, J. and Fowler, W. Brain spectrin, a membrane associated protein related in structure and function to erythrocyte spectrin. Nature 299 (1982) 126-131.
  • 17.Goodman, S.R., Zagon, I.S. and Kulikowski, R.R. Identification of a spectrin-like protein in nonerythroid cells. Proc. Natl. Acad. Sci. USA 78 (1981)7570-7574.
  • 18.You, J., Fischman, D.A. and Steck, T.L. Selection solubilisation of proteins and phospholipids from red blood cell membranes by non-ionic detergents. J. Supramol. Struct. 1 (1973) 233-248.
  • 19.Pauly, J.L., Bankert, R.B. and Repasky, E.A. Immunofluorescent patterns of spectrin in lymphocyte cell lines. J. Immunol. 136 (1986) 246-253.
  • 20.Repasky, E.A., Symer, D.E. and Bankert, R.B. Spectrin immunofluorescence distinguishes a population of naturally capped lymphocytes in situ. J. Cell Biol. 102 (1986) 2088-2097.
  • 21.Lee, J.K., Black, J.D., Repasky, E.A., Kubo, R.T. and Bankert, R.B. Activation induces a rapid reorganisation of spectrin in lymphocytes. Cell 55 (1988) 807-816.
  • 22.Gregorio, C.C., Kubo, R.T., Bankert, R.B. and Repasky, E.A. Translocation of spectrin and protein kinase C to a cytoplasmic aggregate upon lymphocyte activation. Proc. Natl. Acad. Sci. USA 89 (1992) 4947-4951.
  • 23.Gregorio, C.C., Repasky, E.A., Fowler, V.M. and Black, J.D. Dynamic properties of ankyrin in T lymphocytes: colocalisation with spectrin and protein kinase C beta. J. Cell Biol. 125 (1994) 345-358.
  • 24.Di, Y., Repasky, E.A., Laszlo A., Calderwood S. and Subjeck, J. HSP70 translocates into a cytoplasmic aggregate during lymphocyte activation. J. Cell. Physiol. 165 (1995) 228-238.
  • 25.Di, Y., Repasky, E.A. and Subjeck, J.R. Distribution of HSP70, protein kinase C, and spectrin is altered in lymphocytes during a fever-like hyperthermia exposure. J. Cell. Physiol. 172 (1997) 44-54.
  • 26.Wang, X., Osberg, J.R. and Repasky, E.A. Effect of fever-like whole-body hyperthermia on lymphocyte spectrin distribution, protein kinase C activity, and uropod formation. J. Immunol. 162 (1999) 3378-3387.
  • 27.Dubielecka, P., Potoczek, S., Jazwiec, B., Miłoszewska, J., Kuliczkowski, K. and Sikorski, A.F. The effect of chemotherapy with fludarabine/mitoxantrone/dexamethasone on the distribution of spectrin in lymphocytes of non-Hodgkin lymphoma patients. Cell. Mol. Biol. Lett. 6 (2001) 200.
  • 28.De Cuevas, M., Lee, J.K. and Spradling, A.C. Alpha-spectrin is required for germline cell division and differentiation in the Drosophila ovary. Development 122 (1996) 3959-3968.
  • 29.Lin, H., Yue, L. and Spradling, A.C. The Drosophila fusome, a germline- specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development 120 (1994) 947-956.
  • 30.Giardina, A. Origine dell'oocite e delle cellule nutric nel Dytiscus. Int. Mschr. Anat. Physiol. 18 (1901) 477.
  • 31.Lin, H. and Spradling, A.C. Fusome asymmetry and oocyte determination in Drosophila. Dev. Genet. 16 (1995) 6-12.
  • 32.De Cuevas, M. and Spradling, A.C. Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125 (1998) 2781-2789.
  • 33.McKearin, D. The Drosophila fusome, organelle biogenesis and germ cell differentiation: if you build it. Bioessays 19 (1997) 147-152.
  • 34.Deng, W. and Lin, H. Asymmetric germ cell division and oocyte determination during Drosophila oogenesis. Int. Rev. Cytol. 203 (2001) 93-138.
  • 35.De Cuevas, M., Lilly, M.A. and Spradling, A.C. Germline cyst formation in Drosophila. Annu. Rev. Genet. 31 (1997) 405-428.
  • 36.Robinson, D.N., Cant, K. and Cooley, L. Morphogenesis of Drosophila ovarian ring canals. Development 120 (1994) 2015-2025.
  • 37.Deng, W. and Lin, H. Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitates the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev. Biol. 189 (1997) 79-94.
  • 38.Bolivar, J., Huynh, J.R., Lopez-Schier, H., Gonzales, C., Johnston, D. and Gonzales-Reyes, A. Centrosome migration into the Drosophila oocyte is independent of BicD, and Egl and of the organisation of the microtubule cytoskeleton. Development 128 (2001) 1889-1897.
  • 39.Parisi, M.J., Deng, W., Wang, Z. and Lin, H. The arrest gene is required for cyst formation during Drosophila oogenesis. Genesis 29 (2001) 196-209.
  • 40.Vaccari, T. and Ephrusi, A. The fusome and microtubules enrich Par-1 in the oocyte, where it effect polarisation in conjunction with Par-3, BicD, Egl, and dynein. Curr. Biol. 12 (2002) 1524.
  • 41.Rodriguez, M.N., Ron, D., Touhara, K., Chen, C. and Mochly-Rosen, D. RACK1, a protein kinase C anchoring protein, coordinates the binding of activated protein kinase C and select pleckstrin homology domains in vitro. Biochemistry 38 (1999) 13787-13794.
  • 42.Langner, M., Repasky, E.A. and Hiu, S. Relationship between membrane lipid mobility and spectrin distribution in lymphocytes. FEES Lett. 305 (1992) 197-202.
  • 43.Niggli, V. Structural properties of lipid-binding sites in cytoskeletal proteins. Trends Biochem. Sci. 26 (2001) 604-611.
  • 44.Diakowski, W. and Sikorski, A.F. Brain spectrin exerts much stronger effect on anionic phospholipid monolayers than erythroid spectrin. Biochim. Biophys. Acta 1564 (2002) 403-411.
  • 45.Fearon, D.T., Manders, P. and Wagner, S.D. Arrested differentiation, the self-renewing memory lymphocyte and vaccination. Science 293 (2001) 248-250.
  • 46.Lanzavecchia, A. and Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors and memory cells. Science 290 (2000) 92-97.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2f415ed5-a1bc-4380-b85a-1116890979c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.