PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 14 | 2 |

Tytuł artykułu

Can kynurenine pathway tryptophan metabolites be used to monitor cadmium exposure?

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We evaluated the possibility of using the urinary concentrations of tryptophan metabolites such as kynurenine (KYN) and kynurenic acid (KYNA) for monitoring cadmium (Cd) exposure and detecting early effects of its action in the kidney. For this purpose, we analyzed correlations between urinary excretion of both metabolites, Cd concentration and the activity of isoenzyme B of N-acetyl-β-D-glucosaminidase (NAG-B), recognized as one of the most sensitive markers of Cd nephrotoxicity. The study was conducted on rats using an experimental model, corresponding to human environmental and occupational exposure to Cd. The rats were administered 5 and 50 mg Cd/l of drinking water for 24 weeks. The administration of Cd resulted in a marked dose-dependent increase in KYN and KYNA elimination. Regression analysis revealed a linear correlation between urinary Cd concentration and KYN or KYNA excretion as well as between urinary NAG-B activity and KYN or KYNA elimination. We hypothesize that metabolites of tryptophan via kynurenine pathway such as KYN and especially KYNA can be used to monitor chronic exposure to Cd.

Wydawca

-

Rocznik

Tom

14

Numer

2

Opis fizyczny

p.209-215,fig.,ref.

Twórcy

autor
  • Medical University, Mickiewicza 2C, 15-222 Bialystok, Poland
autor
autor

Bibliografia

  • 1. HAC E., KRZYZANOWSKI M., KRECHNIAK J. Cadmium content in human kidney and hair in the Gdansk region. Sci. Total Environ. 224, 81, 1998.
  • 2. ROELS H. A., HOET P., LISON D. Usefulness of biomarkers of exposure to inorganic mercury, lead, or cadmium in controlling occupational and environmental risk of nephrotoxicity. Renal Fail. 21, 251, 1999.
  • 3. MITSUMORI K., SHIBUTANI M., SATO S., ONODERA H., NAKAGAWA J., HAYASHI Y., ANDO M. Relationship between the development of hepato-renal toxicity and cadmium accumulation in rats given minimum to large amounts of cadmium chloride in the long-term: preliminary study. Arch. Toxicol. 72, 545, 1998.
  • 4. PRICE R. C., PATEL S., CHIVERS I., MILLIGAN P., TAYLOR S. A. Early markers of nephrotoxicity: detection of children at risk from environmental pollution. Renal Fail. 21, 303, 1999.
  • 5. MONIUSZKO-JAKONIUK J., PAWLAK D., BRZÓSKA M. M. Exposure to cadmium and tryptophan metabolism. Toxicol. Lett. 123, 48, 2001.
  • 6. PAWLAK D., TANKIEWICZ A., BUCZKO W. Kynurenine and its metabolites in the rat with exerimental renal insufficiency. J. Physiol. Pharmacol. 52, 755, 2001.
  • 7. PAWLAK D., PAWLAK K., MAŁYSZKO J., MYŚLIWIEC M., BUCZKO W. Accumulation of toxic products degradation of kynurenine in hemodialyzed patients. Int. Urol. Nephrol. 33, 399, 2001.
  • 8. PAWLAK D., TANKIEWICZ A., MYSLIWIEC M., BUCZKO W. Tryptophan metabolism via the kynurenine pathway in experimental chronic renal failure. Nephron 90, 328, 2002.
  • 9. PAWLAK D., KODA M., PAWLAK S., WOŁCZYŃSKI S., BUCZKO W. Contribution of quinolinic acid in the development of anemia in renal insufficiency. Am. J. Physiol. 284, F693, 2003.
  • 10. HOLMES E. W., KAHN S. T. Tryptophan distribution and metabolism in experimental chronic renal insufficiency. Exp. Mol. Pathol. 46, 89, 1987.
  • 11. MARTINSONS A., RUDZITE V., GROMA V., BRATASLAVSKA O., WIDNER B., FUCHS D. Kynurenine and neopterin in chronic glomerulonephritis. Adv. Exp. Med. Biol. 467, 579, 1999.
  • 12. SAITO K., FUJIGAKI S., HEYES M. P., SHIBATA K., TAKEMURA M., FUJII H., WADA H., NOMA A., SEISHIMA M. Mechanism of increases in L-kynurenine and quinolinic acid in renal insufficiency. Am. J. Physiol. Renal Physiol. 279, F565, 2000.
  • 13. BUCHI R., ALBERATI-GANI D., MALHERBE P., KOHLER C., BROGER C., CESURA A. M. Cloning and functional expression of a soluble form of kynurenine/αaminoadipate aminotransferase from rat kidney. J. Biol. Chem. 270, 29330, 1995.
  • 14. COSTA C. V., RAGAZZI E., CAPARROTTA L., BERTAZZO A., ALLEGRI G. Liver and kidney kynurenine aminotransferase activity in different strains. Adv. Exp. Med. Biol. 467, 629, 1999.
  • 15. BERTAZZO A., PUNZI L., BERTAZZOLO N., PIANON M., POZZUOLI A., COSTA C.V., ALLEGRI G. Tryptophan catabolism in synovial fluid of various arthropathies and its relationship with inflammatory cytokines. Adv. Exp. Med. Biol. 467, 565, 1999.
  • 16. MUELLER P. W., PRICE R., FINN W. New approaches for detecting thresholds of human nephrotoxicity using cadmium as an example. Environ. Health Perspect. 106, 227, 1998.
  • 17. GILES A.R. Guidelines for the use of animals in biomedical research. Thromb. Haemost. 58, 1078, 1987.
  • 18. ZWIERZ K., GINDZIEŃSKI A., GŁOWACKA D., POROWSKI T. The degradation of glycoconjugates in the human gastric mucous membrane. Acta Med. Acad. Sci. Hung. 38, 145, 1981.
  • 19. HOLMES E. W. Determination of serum kynurenine and hepatic tryptophan dioxygenase activity by high liquid chromatography. Anal. Biochem. 172, 518, 1988.
  • 20. HEVERE C., BEYNE P., JAMAULT H., DELACOUX E. Determination of tryptophan and its kynurenine pathway metabolites in human serum by high-performance liquid chromatography with simultaneous ultraviolet and fluorimetric detection. J. Chromatogr. 675, 157, 1996.
  • 21. STONE T. W., Kynurenic acid antagonist and kynurenine pathway inhibitors. Exp. Opin. Invest. Drugs 10, 633, 2001.
  • 22. CHIARUGI A., MELI E., MORONI F. Similarities and differences in the neuronal death processes activated by 3OH-kynurenine and quinolinic acid. J. Neurochem. 77, 1310, 2001.
  • 23. NIWA T., YOSHIZUMI H., EMOTO Y., MIYAZAKI T., HASHIMOTO N., TAKEDA N., TATEMATSU A., MAED K. Accumulation of quinolinic acid in uremic serum and its removal by hemodialysis. Clin. Chem. 37, 159, 1991.
  • 24. KAWASHIMA Y., SANAKA T., SUGINO N., TAKAHASHI M., MIZOGUCHI H. Suppressive effevt of quinolinic acid and hippuric acid on bone marrow erythroid and lymphocyte blast formation in uremia. Adv. Exp. Med. Biol. 223, 69, 1987.
  • 25. GARACIA G.E., WIRTZ R.A., BARR JR., WOOLFITT A., ROSENBERG R. Xanthurenic acid induced gametogenesis in plasmodium, the malaria parasite. J. Biol. Chem. 273, 12003, 1998.
  • 26. STONE T. W. Neuropharmacology of quinolinic acid and kynurenic acid. Pharmacol. Rev. 45, 309, 1993.
  • 27. MACKENZIE C. R., LANGEN R., TAKIKAWA O., DAUBENER W. Inhibition of indoleamine 2,3-dioxygenase in human macrophages inhibits interferon-gamma-induced bacteriostasis but does not abrogate toxoplasmastasis. Eur. J. Immunol. 29, 3254, 1999.
  • 28. MORONI F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur. J. Pharm. 375, 887, 1999.
  • 29. WIDNER B., LEBLHUBER F., WALLI J., TILZ G. P., DEMEL U., FUCHS D. Degradation of tryptophan in neurodegenerative disorders. Adv. Exp. Med. Biol. 467, 133, 1999.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2cb9fbe3-3a69-46c8-9184-5bf3144b172a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.