PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 09 | 4B |

Tytuł artykułu

DHN10 dehydrin is not expressed in transgenic Solanum species plants when the Dhn10 gene is fused to a glucosyl transferase promoter

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A gene fusion system was used to study the expression pattern of the Dhn10 gene, encoding the DHN10 dehydrin protein in transgenic Solanum tuberosum plants carrying a combined GT-Dhn10 transgen in which the glucosyl transferase (GT) promoter region was fused to the coding sequence of the Dhn10 gene. Expression of the native Dhn10 gene and the GT-Dhn10 constructs was analysed in regenerated S. tuberosum transgenic plants, both at the transcript accumulation and protein levels. We showed that the expression of both the GT-Dhn10 transgen and the Dhn10 gene was regulated in the regenerated plants at the transcriptional level in an independent way, but only the protein product of the native Dhn10 expression was detected. The transcription product of the GT-Dhn10 transgen did not affect the expression of the Dhn10 gene either at the transcription level or at the protein level. The GT-Dhn10 plants did not show changes in freezing capacity compared to the control, non-transgenic ones.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

09

Numer

4B

Opis fizyczny

p.947-961,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
autor

Bibliografia

  • 1. Close, T.J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 97 (1996) 795-803.
  • 2. Close, T.J. Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol. Plant. 100 (1997) 291-296.
  • 3. Ingram, J. and Bartels, D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 47 (1996) 377-403.
  • 4. Goday, A., Jensen, A.B., Culiáňez-Maciá, F.A., Mar Alba, M., Figueras, M., Serratosa, J., Torrent, M. and Pages, M. The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localisation signals. Plant Cell 6 (1994) 351-360.
  • 5. Sarhan, F., Oullet, F. and Vazquez-Tello, A. The wheat wcs120 gene family: a useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol Plant. 101 (1997) 439-445.
  • 6. Danyluk, J., Perron, A., Houde, M., Lamin, A., Flower, B., Benhamou, N. and Sarhan, F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10 (1998) 623-638.
  • 7. Borovskii, G.B., Stupnikova, I.V., Antipina, A.A., Downs, C.A. and Voinikov, V.K. Accumulation of dehydrin-like proteins in the mitochondria of cold-treated plants. J. Plant Physiol. 156 (2000) 797-800.
  • 8. Heyen, B.J., Alsheikh, M.K., Smith, E.A., Torvik, C.F., Seals, D.F. and Randall, S.K. The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol. 130 (2002) 675-687.
  • 9. Nylander, M., Svensson, J., Palva, E.T. and Welin, B.V. Stress-induced accumulation and tissue-specific localisation of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 45_(2001) 263-279.
  • 10. Godoy, J.A, Lunar, R., Torres-Shumann, S., Morena, J., Rodrigo, R.M. and Pintor-Toro, J.A. Expression, tissue distribution and subcellular loalisation of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol. Biol. 26 (1994) 1921-1934.
  • 11. Houde, M., Daniel, C., Lachapelle, M., Allard, F., Liberte, S. and Sarhan, F. Immunolocalisation of freezing tolerance associated proteins in cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 8 (1995) 583-593.
  • 12. Bravo, L.A., Close, T.J., Corcuera, L.J. and Guy, C.L. Characterisation of an 80-kDa dehydrin-like protein in barley resposnsive to cold acclimation. Physiol. Plant. 106 (1999) 177-183.
  • 13. Krüger, C., Berkowith, O., Stephan, U.W. and Hell, R. A metal-binding member of the Late Embryogenesis Abundant protein family transports Iron in the phloem of Ricuinus communis L. J. Biol. Chem. 277 (2002) 2506225062.
  • 14. Egerton-Warburton, L.M., Balsamo, R.A. and Close, T.J. Temporal accumulation and ultrastructural localization of dehydrins in Zeya mays L. Physiol. Plant. 101 (1997) 545-555.
  • 15. Whitsitt, M.S., Collins, R.G. and Mullet, J.E. Modulation of dehydration tolerance in soybean seedlings. Plant Physiol. 114 (1997) 917-925.
  • 16. Cellier, F., Conéjéro, G., Breitler, J.-C. and Casse, F. Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Plant Physiol. 116 (1998) 319-328.
  • 17. Ismail, A.M., Hall, A.E. and Close, T.J. Chilling tolerance during emergence of cowpea associate with a dehydrin and slow electrolyte leakage. Crop. Sci. 37 (1997) 1270-1277.
  • 18. Ismail, A.M., Hall, A.E. and Close, T.J. Allelic variation of dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc. Natl. Acad. Sci. U.S.A. 96 (1999b) 13566-13570.
  • 19. Tabaei-Aghdaei, S.R., Harrison, P. and Pearce, R.S. Expression of dehydration-stress-related genes in the crowns of wheatgresses species [Lophopyrum elongatum (Host) A. Love and Agropyron desertorum (Fisch. Ex Link.) Schult.] having contrasting acclimation to salt, cold and drought. Plant Cell Environ. 23 (2000) 561-571.
  • 20. Zhu, B., Choi, D.W., Fenton, R. and Close, T.J. Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol. Gen. Genet. 264 (2000) 145-153.
  • 21. Richard, S., Morency, M.-J., Drevet, C., Jouanin, L. and Séguin, A. Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresss. Plant Mol. Biol. 43 (2000) 1-10.
  • 22. Rinne, P.L.H., Kaikuranta, P.L.M., ven der Plas, L.H.W. and van der Schoot, C. Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209 (1999) 377-388.
  • 23. Rorat, T., Grygorowicz, W.J., Irzykowski, W., and Rey, P. Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage under vegetative growth. Planta 218 (2004) 878885.
  • 24. Rorat, T., Irzykowski, W., Cuiné, S., Becuwe, N. and Rey, P. PSII-S gene expression, photosynthetic activity and abundance of plastid thioredoxin and lipid-associated proteins during chilling stress in Solanum species differing in freezing tolerance. Physiol Plant. 113 (2001) 72-78.
  • 25. Rorat, T., Irzykowski, W. and Grygorowicz, W.J. Identification and isolation of novel cold induced genes in potato (Solanum sogarandinum). Plant Sci. 124 (1997) 69-78.
  • 26. Guivarc'h, A., Caissard, J.C., Azmi, A. and Elmayan, T. In situ detection of expression of the gus reporter gene in transgenic plants: ten years of blue genes. Transgenic Res. 5 (1996) 281-288.
  • 27. Rorat, T., Irzykowski, W. and Jakubiec, J. Changes in mRNA population during cold acclimation in two potato lines of Solanum sogarandinum differing by their cold hardiness. Acta Physiol. Plant. 18 (1996) 25-32.
  • 28. Korobczak, A., Aksamit, A., Łukaszewicz, M., Lorenc, K., Rorat, T., and Szopa, J. Potato glucosyltransferase gene promoter is environmentally regulated. Plant Sci. 168 (2005) 339-348.
  • 29. Yin, Z., Pawłowicz, I., Bartoszewski, G., Malinowski, R., Malepszy, S. and Rorat, T. Transcriptional expression of a Solanum sogarandinum pGT::Dhn10 gene fusion in cucumber and its correlation with chilling tolerance in transgenic seedlings. Cell. Mol. Biol. Lett. 9 (2004) 891-902.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-27d3aeb9-d53f-4655-ba0c-bdee18310e4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.