PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 10 | 6 |

Tytuł artykułu

Utilization of selected dissolved organic phosphorus compounds by bacteria in lake water under non-limiting orthophosphate conditions

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study presents results on the availability of various organic P compounds for bacteria from mesotrophic Lake Constance. The rates of hydrolysis of all tested compounds added to the analyzed lake water samples did not correlate with assimilation of liberated inorganic P. beta -glycerophosphate and AMP were the most efficiently hydrolysed by bacterial phosphohydrolytic enzymes. The highest specific P uptake was found in water samples supplemented with nucleotides. The fastest increase in bacterial numbers was observed in water samples enriched with DNA, RNA, ATP and phytin. Analysis of discrepancies between rates of hydrolysis, specific P uptake and bacterial growth rates in samples enriched with various organic P compounds suggested that bacterial phosphatases participated substantially in processes of dissolved organic carbon (DOC) compound decomposition in lake water, whereas 5'-nucleotidase was mainly responsible for bacterial P demand.

Wydawca

-

Rocznik

Tom

10

Numer

6

Opis fizyczny

p.475-483,fig.,ref.

Twórcy

autor
  • University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
autor

Bibliografia

  • 1. ARGAST M., BOOS W. Co-regulation in Escherichia coli of a novel transport system for sn-glycerol-3-phosphate and outer membrane protein Ic (e,E) with alkaline phosphatase and phosphate binding protein. J. Bacteriol. 143, 142, 1980.
  • 2. HEATH R.T., EDINGER A.C. Uptake of 32P-phosphoryl from glucose-6-phosphate by plankton in an acid bog lake. Verh. Internat. Verein. Limnol., 24, 210, 1990.
  • 3. SIUDA W. Enzymatyczna regeneracja ortofosforanu w wodach jezior. Acta Microbiol. Polon. 2001 (in press)
  • 4. REICHARDT W., OVERBECK J., STEUBING L. Free dissolved enzymes in lake water. Nature, 216, 1345, 1967.
  • 5. SIUDA W. Phosphatases and their role in organic phosphorus transformation in natural waters. A review. Pol. Arch. Hydrobiol. 31, 207, 1984.
  • 6. OLSSON H. Phosphatases in lakes - characterization, activity and ecological implications. Acta Univ. Ups. Comprehen sive Summaries of Uppsala Dissertations from the Faculty of Science 139, 1, 1988
  • 7. WYNNE D., GOPHEN M. Phosphatase activity in fresh water zooplankton. Oikos 37, 369, 1981.
  • 8. JANSSON M. Phosphatases in lake water: characterization of enzymes from phytoplankton and zooplankton by gel filtration. Science 194, 320, 1976.
  • 9. SIUDA W., GUDE H. A comparative study on 5'-nuc- leotidase (5'-nase) and alkaline phosphatase (APA) activities in lakes. Arch. Hydrobiol. 131, 211, 1994.
  • 10. AMMERMAN J.W., AZAM F. Bacterial 5'-nucleotidase in aquatic ecosystems: A novel mechanism of phosphorus re generation. Science 227, 1338, 1985.
  • 11. AMMERMAN J.W., AZAM F. Bacterial 5'-nucleotidase activity in estuarine and coastal marine waters: Characterization of enzyme activity. Limnol. Oceanogr. 36, 1427, 1991.
  • 12. AMMERMAN J.W., AZAM F. Bacterial 5'-nucleotidase activity in estuarine and coastal marine waters: Role in phosphorus regeneration. Limnol. Oceanogr. 36, 1437, 1991.
  • 13. SIUDA W., GUDE H. Evaluation of dissolved DNA and nucleotides as potential sources of phosphorus for plankton organisms in Lake Constance. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 48, 155, 1996.
  • 14. SIUDA W., CHROST R.J., GUDE H. Distribution and origin of dissolved DNA in lakes of different trophic states. Aquat. Microb. Ecol. 15, 89, 1998.
  • 15. JCRGENSEN N.O.G, JACOBSEN C.S. Bacterial uptake and utilization of dissolved DNA. Aquat. Microb. Ecol. 11, 263, 1996.
  • 16. PAUL J.H., JEFFREY W.H., DAVID A.W., DeFLAUN M.F., CEZARES L.H. Turnover of extracellular DNA in eutrophic and oligotrophic freshwater environments of southwest Florida. Appl. Environ. Microbiol. 55, 1823, 1989.
  • 17. TURK V., REHNSTAM A, LUNDBERG E, HAG­STROM A. Release of bacterial DNA by marine nannof- lagellates, as intermediate step in phosphorus regeneration. Appl. Environ. Microbiol. 58, 3744, 1992.
  • 18. COTNER J.B., WETZEL R.G. Bacterial phosphatases from different habitats in a small, hardwater lake. In: Chrost R.J. ed.: Microbial Enzymes in Aquatic Environments. Spring er-Verlag, New York Berlin Heidelberg, pp. 187-205, 1991.
  • 19. SIUDA W., CHROST R.J. Concentration and susceptibility of dissolved DNA for enzyme degradation in lake water - some methodological remarks. Aquat. Microb. Ecol. 21, 195, 2000.
  • 20. PORTER K.G., FEIG Y.S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943, 1980.
  • 21. GUDE H., HAIBEL B, MULLER H. Development of planktonic bacterial population in a water column of Lake Constance (Bodensee-Obersee). Arch. Hydrobiol. 105, 59, 1985.
  • 22. KOROLEFF F. Determination of phosphorus. Chemistry of the element in seawater.In: Grasshoff K. et al. eds.: Methods of Seawater Analysis. Verlag Chemie pp. 125-139, 1983.
  • 23. CHROST R.J, SIUDA W., HALEMEJKO G.Z. Longterm studies on alkaline phosphatase activity (APA) in a lake with fish-aquaculture in relation to lake eutrophication and phosphorus cycle. Arch. Hydrobiol. Suppl. 70, 1, 1984.
  • 24. BERMAN T. Alkaline phosphatases and phosphorus avail ability in Lake Kinneret. Limnol. Oceanogr. 15, 663, 1970.
  • 25. CHROST R.J, OVERBECK J. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake PluBsee (north German eutrophic lake). Microb. Ecol. 13, 229, 1987.
  • 26. CHROST R.J. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chrost R.J. ed.: Microbial Enzymes in Aquatic Environments. Spring er-Verlag, New York Berlin Heidelberg, pp. 29-54, 1991.
  • 27. PETTERSSON K. Alkaline phosphatase activity and algal surplus phosphorus as phosphorus deficiency indicator in Lake Erken. Arch. Hydrobiol. 89, 54, 1980.
  • 28. SIUDA W., CHROST R.J The relationship between alkaline phosphatase (APA) activity and phosphate availability for phytoplankton and bacteria in eutrophic lakes. Acta Microbiol. Polon. 36, 247, 1987.
  • 29. SIUDA W., GUDE H. The role of phosphorus and organic carbon compounds in regulation of alkaline phosphatase activity and P regeneration processes in eutrophic lakes. Pol. Arch. Hydrobiol. 41, 171, 1994.
  • 30. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim. Bi- ophys. Acta 38, 460, 1960.
  • 31. KUO M.H. BLUMENTHAL H.J. Absence of phosphatase repression by inorganic phosphate in some micro-organisms. Nature Lond. 190, 29, 1961.
  • 32. HERNANDEZ I, HWANG S-J, HEATH R.T. Measurement of phosphomonoesterase activity with a radiolabeled glucose-6-phosphate. Role in the phosphorus requirement of phytoplankton and bacterioplankton in a temperate mesotrophic lake. Arch. Hydrobiol., 137, 265, 1996.
  • 33. HOPPE H.G. Profiles of ectoenzymes in the Indian Ocean: Phenomena of phosphatase activity in the mesopelagic zone. Aquat. Microb. Ecol. 19, 139, 1999.
  • 34. HOPPE H.G. Studies on phosphatase activity in the sea. In: Phosphatases in the Environment, Whitton B.A., Hernandez J. eds.: Kluwer Academic Publishers, Dortrecht, 2001 (in press).
  • 35. HOPPE H.G., KIM S.J., GOCKE K. Microbial decomposition in aquatic environments: combined processes of extracellular enzyme activity and substrate uptake. Appl. Environ.Microbiol. 54, 784, 1988.
  • 36. GUDE H.Incorporation of 14C-glucose, 14C-amino acids and 3H-thymidine by different size fractions of aquatic microorganisms. Arch. Hydrobiol. Beih. Ergebn. Limnol. 31, 61, 1988.
  • 37. CHROST R.J., OVERBECK J, WCISLO R. Evaluation of the [3H]thymidine method for estimating bacterial growth rates and production in the lake watenre-examination and methodological comments. Acta Microbiol. Polon. 37, 95, 1988.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-20e788b0-1546-42cd-8db9-d15405088568
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.