PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 58 | 1 |

Tytuł artykułu

Phytate-degrading activity in lactic acid bacteria

Treść / Zawartość

Warianty tytułu

PL
Aktywnosc bakterii fermentacji mlekowej w degradowaniu fitynianow

Języki publikacji

EN

Abstrakty

EN
The phytate-degrading and phosphatase activities of several Lactobacillus strains belonging to different species and isolated from different ecosystems were tested. The specific activities against phytate (InsP6) varied from 0.024 to 0.531 U/mg protein, being the highest for L. casei DSM 20011. The studied strains hydrolysed p-nitrophenylphosphate at higher rates than phytate, except for L. casei DSM 20011 and L. plantarum W42. The ability of the different strains to hydrolyse InsP6 and generate lower myo-inositol phosphates during growth was tested by HPLC. The InsP6 hydrolysis was in the range from 0.0 to 8.83%, being the highest for L. plantarum W42 and L. plantarum 110, followed by L. casei 40W. The optimal pH and temperatures of phytate-degrading activity varied in the range from 5.0 to 7.5 and from 50 to 60°C, respectively. The incorporation of different types of carbon sources or inorganic phosphate to the growth medium modulated the synthesis of phytate-degrading enzymes in the studied strains. Further studies should be carried out to provide progress in the understanding of the potential nutritional and technological roles of the most active strains in the elaboration of whole sour breads.
PL
Zbadano zdolność do degradacji fitynianów i aktywność fosfatazy szczepów Lactobacillus wyizolowanych z różnych źródeł i należących do różnych gatunków. Specyficzna aktywność wobec fitynianu (Ins P6) była zróżnicowana w szerokim przedziale 0,024-0,531 U/mg białka, a najwyższą aktywnością charakteryzował się szczep L. casei DSM 20011. Badane szczepy hydrolizowały p-nitrofenylofosforan w wyższym stopniu niż fitynian, z wyjątkiem L. casei DSM 20011 i L. plantarum W42. Zdolność szczepów do hydrolizy InsP6 i generowania prostszych fosforanów myo-inozitolu podczas wzrostu określano metodą HPLC. InsP6 był hydrolizowany w zakresie od 0,0 do 8,83, a najwyższy poziom hydrolizy stwierdzono w hodowli L. plantarum W42 i L. plantarum 110, a następnie L. casei 40W. Warunki hodowli, w których badane szczepy wykazywały najwyższą aktywność degradacji, były następujące: poziom pH 5,0-7,5 i temperatura 50-60oC. Zastosowanie w podłożu wzrostowym różnych źródeł węgla i fosforu nieorganicznego powodowało modulację syntezy enzymów degradujących fityniany. Przyszłe badania powinny być prowadzone w kierunku pogłębienia wiedzy o potencjalnie odżywczej i technologicznej roli najbardziej aktywnych szczepów Lactobacillus w produkcji pełnoziarnistego chleba produkowanego na zakwasie.

Wydawca

-

Rocznik

Tom

58

Numer

1

Opis fizyczny

p.33-40,fig.,ref.

Twórcy

autor
  • Institute of Agrochemistry and Food Technology [IATA-CSIC], P.O.Box 73, 46100-Burjassot, Valencia, Spain
autor
autor
autor

Bibliografia

  • 1. Bergqvist S.W., Sandberg A.-S., Carlsson N.-G., Andlid T., Improved iron solubility in carrot juice fermented by homo- and hetero-fermentative lactic acid bacteria. Food Microbiol., 2005, 22, 53-61.
  • 2. Collar C., Martínez-Anaya M.A., Benedito de Barber C., Interactive effects between microbial breadmaking starters and wheat flours on sour dough and bread quality. Rev. Esp. Cien. Tec. Ali., 1994, 34, 191-201.
  • 3. Charalampopoulos D., Wang R., Pandiella S.S., Webb C., Application of cereals and cereal components in functional foods: a review. Int. J. Food Microbiol., 2002, 79, 131-141.
  • 4. De Angelis M., Gallo G., Corbo M.R., McSweeney P.L.H., Faccia M., Giovine M., Gobbetti M., Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int. J. Food Microbiol., 2003, 87, 259-270.
  • 5. De Vuyst L., Neysens P., The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci Tech., 2005, 16, 43‑56.
  • 6. Fredrikson M., Andlid T., Haikara A., Sandberg A.-S., Phytate degradation by micro-organisms in synthetic media and pea flour. J. Appl. Microbiol., 2002, 93, 197-204.
  • 7. Fretzdorff B., Brümmer J.-M., Reduction of phytic acid during breadmaking of whole-meal breads. Cereal Chem., 1992, 69, 266-270.
  • 8. Gianotti A., Vannini L., Gobbetti M., Corsetti A., Gardini F., Guerzoni M.E., Modelling of the activity of selected starters during sourdough fermentation. Food Microbiol., 1997, 14, 327-337.
  • 9. Haros M., Rosell C.M., Benedito C., Fungal phytase as a potential breadmaking additive. Eur. Food Res. Tech., 2001, 213, 317-322.
  • 10. Haros M., Bielecka M., Sanz Y., Phytase activity as a novel metabolic feature in Bifidobacterium. FEMS Microbiol. Lett., 2005, 247, 231-239.
  • 11. Hullet F.M., The signal-traduction network for Pho regulation in Bacillus subtilis. Molecular Microbiol., 1996, 19, 933-939.
  • 12. Konietzny U., Greiner R., Molecular and catalytic properties of phytare-degrading enzymes (phytases). Int. J. Food Sci. Tech., 2002, 37, 791-812.
  • 13. Lassen S.F., Breinholt J., Ostergaard P.R., Brugger R., Bischoff A., Wyss M., Fuglsang C.C., Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens. Appl. Environ. Microb., 2001, 67, 4701-4707.
  • 14. Leenhardt F., Levrat-Verny M.-A., Chanliaud E., Rémésy C., Moderate decrease of pH by sourdough fermentation is sufficient to reduce phytate content of whole wheat flour through endogenous phytase activity. J. Agr. Food Chem., 2005, 53, 98‑102.
  • 15. Lopez H.W., Ouvry A., Bervas E., Guy C., Messager A., Demigne C., Remesy C., Strains of lactic acid bacteria isolated from sour doughs degrade phytate and improve calcium and magnesium solubility from whole wheat flour. J. Agr. Food Chem., 2000, 48, 2281-2285.
  • 16. Lopez H.W., Krespine V., Guy C., Messager A., Demigne C., Remesy C., Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium. J. Agric. Food. Chem., 2001, 49, 2657-2662.
  • 17. Martínez-Anaya M.A., Factors influencing the quality of wheat sourdough processes, and the use of chemometrics in quality assessment. Rev. Esp. Cien. Tec. Ali., 1994, 34, 469-493.
  • 18. Martínez-Anaya M.A., LLin M.L., Macías M.P., Collar C., Regulation of acetic acid production by homo- and heterofermentative lactobacilli in whole-wheat sour-doughs. Z. Lebensm. Uniters Forsch., 1994, 199, 186-190.
  • 19. Morishita T., Deguchi Y., Yajima M., Sakurai T., Yura T., Multiple nutritional requirements of lactobacilli: genetic lesions affecting aminoacids biosynthetic pathways. J. Bacteriol., 1981, 148, 64-71.
  • 20. Nayini,N.R., Markakis P., The phytase of yeast. Lebensm. Wiss. Technol., 1984, 17, 24-26.
  • 21. Oh B-C., Choi W-C., Park S., Kim Y-O., Oh T-K., Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl. Microbiol. Biot., 2004, 63, 362-372.
  • 22. Ohnishi S.T., Barr J.K., A simplified method of quantitating proteins using the biuret and phenol reagents. Anal. Biochem., 1978, 86, 193-200.
  • 23. Palacios M.C., Haros M., Rosell C.M., Sanz Y., Characterization of an acid phosphatase from Lactobacillus pentosus: regulation and biochemical properties. J. Appl. Microbiol., 2005, 98, 229-237.
  • 24. Palacios M.C., Haros M., Sanz Y., Rosell C.M., Phytate degradation by Bifidobacterium on whole wheat fermentation. Eur. Food Res. Tech., 2008, DOI: 10.1007/s00217-007-0602-3.
  • 25. Reale A., Mannina L., Tremonte P., Sobolev A.P., Succi M., Sorrentino E., Coppola R., Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a P-31 NMR. J. Agric. Food Chem., 2004, 52, 6300-6305.
  • 26. Salovaara H., Spicher G., Use of the sour dough process to improve the quality of wheat bread. Getreide, Mehl. und Brot., 1987, 41, 116-118.
  • 27. Sandberg A.-S., Ahderinne R., HPLC method for determination of tri-, tetra-, penta- and hexaphosphates in food and intestinal contents. J. Food Sci., 1986, 3, 547-550.
  • 28. Sandberg,A.-S., Carlsson N.G., Svanberg U., Effects of inositol tri-, tetra-, penta- and hexaphosphates on in vitro estimation of iron availability. J. Food Sci., 1989, 54, 159-161, 186.
  • 29. Screeramulu G., Srinivasa D.S., Nand K., Joseph R., Lactobacillus amylovorus as a phytase producer in submerged culture. Lett. Appl. Microbiol., 1996, 23, 385-388.
  • 30. Shieh T.R., Ware J.H., Survey of microorganisms for the production of extracellular phytase. Appl. Microbiol., 1968, 16, 1342‑1351.
  • 31. Tanner J.T., Barnett S.A., Methods of analysis of infant formula: food and drug administration and infant formula council collaborative study, Phase III. J. Assoc. Off. Anal. Chem., 1986, 69, 777-785.
  • 32. Thaller M.C., Schippa S., Bonci A., Cresti S., Rossolini G.M., Identification of the gene (aphA) encoding the class B acid phosphatase/phosphotransferase of Escherichia coli MG1655 and characterization of its product. FEMS Microbiol. Lett., 1997, 146, 191-198.
  • 33. Tomschy A., Brugger R., Lehmann M., Svendsen A., Vogel K., Kostrewa D., Lassen S.F., Burger D., Kronenberger A., van Loon A.P.G.M., Pasamontes L., Wyss M., Engineering of phytase for improved activity at low pH. Appl. Env. Microbiol., 2002, 68, 1907-1913.
  • 34. Türk M., Sandberg A.-S., Carlsson N.-G., Andlid T., Inositol hexaphosphate hydrolysis by baker’s yeast. Capacity, kinetics, and degradation products. J. Agric. Food Chem., 2000, 48, 100-104.
  • 35. Vohra A., Satyanarayana T., Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol., 2003, 23, 29-60.
  • 36. Wang J., Rosell C.M., Benedito de Barber C., Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem., 2002, 79, 221-226.
  • 37. Wyss M., Pasamontes L., Friedlein A., Rémy R., Tessier M., Kronenberger A., Middendorf A., Lehmann M., Schnoebelen L., Röthlisberger U., Kusznir E., Wahl G., Müller F., Lahn H.-W., Vogel K., van Loon A.P.G.M., Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl. Environ. Microbiol., 1999, 65, 359-366.
  • 38. Zamudio M., González A., Medina J.A., Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase. Lett. Appl. Microbiol., 2001, 32, 181-184.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1e07b555-c495-4f1f-88ee-5e03d1324661
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.