PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 55 | 2 |

Tytuł artykułu

Biotransformation of [-]-menthol by spores of Mucor ramannianus and study of the pathways involved

Warianty tytułu

PL
Biotransformacja [-]-mentolu za pomoca zarodnikow Mucor ramannianus oraz badania szlakow metabolicznych

Języki publikacji

EN

Abstrakty

EN
The biotransformation of (–)–menthol by Mucor ramannianus was studied. It was carried out with sporulated surface cultures of Mucor ramannianus. The main bioconversion products obtained from (–)–menthol were trans-p-menthan-8-ol, trans-menth-2-en-1-ol, sabinane, pmenthane- 3,8-diol, isomenthol, and 1,8-cineole, also resulting in higher yields. Biotransformation with sporulated surface cultures was also monitored in Petri dishes and the same solid medium, Sabouraud Dextrose Agar (SD A), was used. In the solid agar medium inoculated with spores of Mucor ramannianus, first germination of the spores and then mycelial growth took place. After 1 week, the surfaces of Petri dishes were covered with spores and biotransformation reaction had started. However, there is no report on the biotransformation of (-)-menthol using Mucor ramannianus. Six isolates (93.6%) found Mucor ramannianus as a biocatalyst and biotransformation of (–)–menthol was investigated. The pathways involved in the biotransformation of (–)–menthol by two main products are also discussed.
PL
Metabolizm biotransformacji (–)–mentolu badano przy użyciu grzyba pleśniowego Mucor ramannianus. Doświadczenie przeprowadzono na podłożu sprzyjającym zarodnikowaniu Mucor ramannianus. Podstawowymi produktami metabolizmu otrzymanymi z (–)–mentolu były: trans-p58 mentan-8-ol, trans-ment-2-en-1-ol, sabinan, p-mentan-3,8-diol, izomentol, i 1,8-cineol. Badania prowadzono na stałym podłożu Sabouraud Dextrose Agar (SD A) w płytkach Petriego. Efekty biotransformacji (–)–mentolu pod wpływem zarodnikującego szczepu M. ramannianus oceniano po tygodniu inkubacji. W trakcie biotransformacji (–)–mentolu powstało 6 składników, które stanowiły 93,6% całego substratu. Ponadto przedyskutowano drogę biotransformacji (–)– mentolu w następstwie rozwijającego się szczepu grzyba M. ramannianus do dwóch głównych produktów.

Wydawca

-

Czasopismo

Rocznik

Tom

55

Numer

2

Opis fizyczny

p.51-58,fig.,ref.

Twórcy

autor
  • Islamic Azad University, P.O.Box 19585-936, Tehran, Iran
autor
autor
autor

Bibliografia

  • 1. Miyazawa M, Kakita H, Kameoka H. 18th IU PAC Symposium on he Chemistry of Natural Products. Strasbourg 1992:250.
  • 2. Miyazawa M, Kakita H, Kameoka H. Enantioseletive hydroxylation of (±)–piperitone to (–)– (4R,6S)-6- hydroxypiperiton by Rhizoctonia solani. Chem Express 1993; 8:61-5.
  • 3. Miyazawa M, Kakita H, Hyakumachi M, Kameoka H. Preferential hydroxylation of (±)–piperitone to (–)–(4R,6S)-6-hydroxypiperiton by Rhizoctonia solani. Chem Express 1993; 8:569-70.
  • 4. Miyazawa M, Kakita H, Kameoka H. 9th Annual Meeting of International Society of Chemcal Ecology, Kyoto 1992:56.
  • 5. Miyazawa M, Kakita H, Kameoka H. Asymmetric reduction of karahanaenone with various microorganisms. Tetrahedron:Asymmetry 1995;6: 2121-3.
  • 6. Miyazawa M, Kakita H, Kameoka H. Biotransformation of (+)–camphorquinone and (–)–camphorquinonet to camphanediols by Glomerella cingulata. Phytochemistry 1997; 44:79-81.
  • 7. Miyazawa M, Kakita H, Kameoka H. .Biotransformation of (–)–isopinocampheol and (+)–isopinocampheol by three fungi. Phytochemistry, 1998; 45:945-47.
  • 8. Miyazawa M, Kumagae S, Kameoka H. Biotransformation of (+)– and (–)–menthol by the larvae of common cutworm (Spodoptera litura). J Agric Food Chem 1999; 47(9):3938-40.
  • 9. Miyazawa M, Kawazoe H, Hyakumachi M. Biotransformation of l-menthol by Rhizoctonia solani. J Chem Technol Biotechnol 2003;78:620-21.
  • 10. Dykvan MS , Rensburg E, Rensburg IPB, Moleleki N. Biotransformation of monoterpenoid ketones by yeasts and yeast-like fungi. J Mol Cat B: Enz 1998; 5:149-54.
  • 11. Miyazawa M, Kawazoe H, Hyakumachi M. Biotransformation of l-menthol by soil-borne plant pathogenic fungi (Rhizoctonia solani). J Chem Technol Biotechnol 2001; 77:21-4.
  • 12. Madyastha KM , KrishnaMurthy NSR . Transformation of acetates of citronellol, geraniol, and linalool by Aspergillus niger: regiospecifichydroxylation of citronellol by a cell-free system. Appl Microbiol Biotechnol 1988a; 28:324-9.
  • 13. Madyastha KM , Krishna Murthy NSR . Regiospecific hydroxylation of acyclic monoterpene alcohols by
  • 14. Arvela PM, Kumr N, Kubicka D, Nasir A, Heikkila T, Lehto VP, Syoholm T,Murzin DY u. One-pot citral transformation to methol over bifunctional micro- and mesoporous metal modified catalysts: effect of catalyst support and metal. J Mol Cat A: Chem 2005; 240:72-81.
  • 15. Demyttenaere Jan CR, Carme Herrera M, De Kimpe N. Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp. Phytochemistry 2000; 55:363-73.
  • 16. Wood JB. Microbial fermentation of lower terpenoids. Process Biochem 1969; 2:50-3.
  • 17. Esmaeli A, Sharafian S, Safaiyan S, Rezazadeh S, Rustaiyan A. Biotransformation of one monoterpene by sporulated surface cultures of Aspergillus niger and Penicillium sp. Nat Prod Res 2009; 23:1058-61.
  • 17. Massada Y. In analysis of essential oil by gas chromatography and mass spectrometry. New York 1976.
  • 18. Adams RP. Identification of essential oil components by gas chromatography/mass spectroscopy. Allured, Carol Stream. IL , US A 1995.
  • 19. Ramaswami SK , Briscese P, Gargiullo R, Vonngeldern T. In flavours and fragrances. A Worl Perspective,1988; Lawrence BM, Mookerjee BD and Willis BJ (eds). Elsevier: Amsterdam, 1951.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-189d4e35-2f46-40c0-9e78-8942ffe0e2ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.