PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 46 |

Tytuł artykułu

Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Berkheya coddii Roessler (Asteraceae), an endemic herbaceous and perennial nickel-hyperaccumulating plant growing on Ni-enriched ultramafic soils in South Africa, is perceived as a promising species for phytoremediation and phytomining due to its large biomass production and high Ni content. Total concentrations of a number of elements in mature leaves, soil and related bedrock were obtained. The average Ni concentration in leaves was 18,000 µg · g-1 dry mass, whereas in soil and bedrock the total amount of Ni was 1,300 µg · g-1 and 1,500 µg · g-1, respectively. Exceptionally high average Ni concentrations (55,000 ± 15,000 µg · g-1, n = 6) were found in B. coddii leaves from Songimvelo Game Reserve, including the highest-ever reported concentration of Ni in leaves (76,100 µg · g-1 - maximum value in a single sample). Young plants grown in pots with ultramafic soil accumulated small quantities of Cd, Pb or Zn, but the concentrations of these elements increased after the addition of metal solutions to the soil. Excised shoots immersed in concentrated solutions of Cd, Ni, Pb or Zn accumulated large amounts of these metals in the leaves.

Wydawca

-

Rocznik

Tom

46

Opis fizyczny

p.75-85,fig.,ref.

Twórcy

  • iThemba Laboratory for Accelerator Based Sciences, P.O.Box 722, Somerset West 7129, South Africa
autor
autor
autor
autor
autor

Bibliografia

  • Anderson CWN, Brooks RR, Chiarucci A, Lacoste CJ, Leblanc M, Robinson BH, Simcock R, and Stewart RB. 1999. Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration 67: 407-415.
  • Augustyniak M, and Migula P. 2000. Body burden with metals and detoxifying abilities of the grasshopper - Chorthippus brunneus (Thunberg) from industrially polluted areas. In: Markert B, Friese K [eds.], Trace elements — their distribution and effects in the environment, 16: 423-454. Elsevier Science Publ., Amsterdam.
  • Augustyniak M, Mesjasz-Przybyłowicz J, Nakonieczny M, Dybowska M, Przybyłowicz W, and Migula P. 2002. Food relations between Chrysolina pardalina and Berkheya coddii - a nickel hyperaccumulator from South-African ultramafic outcrops. Fresenius Environmental Bulletin 11: 85-90.
  • Brooks RR. 1998. Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CABI Publishing, CAB International, New York, NY.
  • Brooks RR, and Robinson BH. 1998. The potential use of hyperaccumulators and other plants for phytomining. In: Brooks RR [ed.], Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining, 327-356. CABI Publishing, CAB International, New York, NY.
  • Brooks RR, Chambers MF, Nicks LJ, and Robinson BH. 1998. Phytomining. Trends in Plant Science 3: 359-362.
  • Brooks R, Lee J, Reeves RD, and Jaffré T. 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7: 49-57.
  • Brooks RR, Robinson BH, Howes AW, and Chiarucci A. 2001. An evaluation of Berkheya coddii Roessler and Alyssum bertolonii Desv. for phytoremediation and phytomining of nickel. South African Journal of Science 97: 11-12.
  • Budka D, Mesjasz-Przybylowicz J, and Przybylowicz WJ. 2004. Micro-PIXE analysis: importance of biological sample preparation techniques. Radiation Physics and Chemistry 71: 783-784.
  • Chaney RL. 1983. Plant uptake of inorganic waste. In: Parr JE, Marsh PB, Kla JM [eds.], Land treatment of hazardous waste, 50-76. Noyes Data Corp, Park Ridge, IL.
  • Cunningham SD, Berti WR, and Huang JWW. 1995. Phytoremediation of contaminated soils. Trends in Biotechnology 13: 393-397.
  • Dushenkov V, Kumar PBAN, Motto H, and Raskin I. 1995. Rhizofiltration - the use of plants to remove heavy metals from aqueous streams. Environmental Science and Technology 29: 1239-1245.
  • Galiulin RV, Baskin VN, Galiulina RR, Kucharski R, Malkowski E, and Marchwinska E. 1998. The impact of phytoextraction effectors on the enzymatic activity of soil contaminated by heavy metals. Agricultural Chemistry 2: 243-251.
  • Garbisu C, and Alkorta I. 2001. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology 77: 229-236.
  • Glass DJ. 1998. The 1998 United States market for phytoremediation. D. Glass Associates, Inc., Needham, MA.
  • Glass DJ. 2000. Economic potential of phytoremediation. In: Raskin I, Ensley BD [eds.], Phytoremediation of toxic metals: using plants to plants up the environment, 15-31. John Wiley & Sons, Inc., New York, NY.
  • Gzyl J. 1995. Ecological impact and remediation of contaminated sites around lead smelters in Poland. Journal of Geochemical Exploration 52: 251-258.
  • Hammer D, and Keller C. 2003. Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use and Management 19: 144-149.
  • Jaffré T. 1976. Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 51: 579-580.
  • Kabata-Pendias A, and Pendias H. 1985. Trace elements in soils and plants. CRC Press Inc., Boca Raton, FL.
  • Koeberl C. 1993. Instrumental neutron activation analysis of geochemical and cosmochemical samples: a fast and proven method for small sample analysis. Journal of Radioanalytical and Nuclear Chemistry 168: 47-60.
  • Kumar PBAN, Dushenkov V, Motto H, and Raskin I. 1995. Phytoextraction - the use of plants to remove heavy metals from soils. Environmental Science and Technology 29: 1232-1238.
  • Le Clercq M, Adschiri T, and Arai K. 2001. Hydrothermal processing of nickel containing biomining or bioremediation biomass. Biomass and Bioenergy 21: 73-80.
  • Li YM, Chaney R, Brewer E, Angle JS, and Nelkin J. 2003a. Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environmental Science and Technology 37: 1463-1468.
  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, and Nelkin J. 2003b. Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant and Soil 249: 107-115.
  • Leblanc M, Robinson BH, Petit D, Deram A, and Brooks RR. 1999. The phytomining and environmental significance of hyperaccumulation of thallium by two plant species. Economic Geology 94: 109-114.
  • Lowe DR and Byerly GR. 1999. Geologic Evolution of the Barberton Greenstone Belt, South Africa. Special Paper 329, Geological Society of America, Boulder, CO.
  • Mesjasz-Przybylowicz J. 1999. Phytophagous insects associated with the nickel hyperaccumulating plant - Berkheya coddii (Asteraceae) in Mpumalanga, South Africa. Proceedings of the Third International Conference on Serpentine Ecology, 22-28 March 1999, 8. Kruger National Park, South Africa.
  • Mesjasz-Przybylowicz J, and Przybylowicz WJ. 2001. Phytophagous insects associated with the nickel hyperaccumulating plant - Berkheya coddii (Asteraceae) in Mpumalanga, South Africa. South African Journal of Science 97: 596-598.
  • Mesjasz-Przybylowicz J, and Przybylowicz WJ. 2003. Nickel distribution in Berkheya coddii leaves by micro-PIXE and SEM/EDS. Proceedings Microscopy Society of South Africa 33: 68.
  • Mesjasz-Przybylowicz J, Przybylowicz WJ, and Pineda CA. 2001. Nuclear microprobe studies of elemental distribution in apical leaves of the Ni hyperaccumulator Berkheya coddii. South African Journal of Science 97: 591-593.
  • Mesjasz-Przybyłowicz J, Przybyłowicz W, Ostachowicz B, Augustyniak M, Nakonieczny M, and Migula P. 2002. Trace elements in the chrysomelid beetle (Chrysolina pardalina) and its Ni-hyperaccumulating host-plant (Berkheya coddii). Fresenius Environmental Bulletin 11: 78-84.
  • Morrey DR, Balkwill K, and Balkwill MJ. 1989. Studies on serpentine flora - preliminary analyses of soils and vegetation associated with serpentinite rock formations in the southeastern Transvaal. South African Journal of Botany 55: 171-177.
  • Nick LF, and Chambers MF. 1995. Farming for metals. Mining Environmental Management 3: 15-18.
  • Nick LF, and Chambers MF. 1998. A pioneering study of potential phytomining for nickel - plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. In: Brooks RR [ed.], Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining, 313-325. CABI Publishing, CAB International, New York, NY.
  • Pogrzeba M, Kucharski R, Sas-Nowosielska A, Malkowski E, Krynski K, and Kuperberg JM. 2001. Heavy metal removal from municipal sewage sludges by phytoextraction. Proceedings of International Containment and Remediation Technology Conference and Exhibition, 10-13 June, 1-3. Orlando, USA.
  • Raskin I, Smith RD, and Salt DE. 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology 8: 221-226.
  • Raskin I, and Ensley BD [eds.] 2000. Phytoremediation of toxic metals: using plants to plants up the environment. John Wiley & Sons, Inc., New York, NY.
  • Reimold WU, Koeberl C, and Bishop J. 1994. Roter Kamm impact crater, Namibia: Geochemistry of basement rocks and breccias. Geochimica et Cosmochimica Acta 58: 2689- 2710.
  • Reeves RD. 1992. The hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD [eds], The vegetation of ultramafic (serpentine) soils, 252-277. Intercept Ltd., Andover, NH.
  • Reeves RD, and Baker AJM. 2000. Metal-accumulating plants. In: Raskin I, and Ensley BD [ eds ], Phytoremediation of toxic metals: using plants to plants up the environment, 15-31. John Wiley & Sons, Inc., New York.
  • Robinson BH, Brooks RR, and Clothier BE. 1999. Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: Potential use for phytomining and phytoremediation. Annals of Botany 84: 689-694.
  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, and De Dominicis V. 1997a. The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and the phytomining of nickel. Journal of Geochemical Exploration 59: 75-86.
  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, and Gregg PEH. 1997b. The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. Journal of Geochemical Exploration 60: 115-126.
  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, and Raskin I. 1995. Phytoremediation - a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13: 468-474.
  • Salt DE, Smith RD, and Raskin I. 1998. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology 49: 643-648.
  • Turnau K, and Mesjasz-Przybylowicz J. 2003. Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13: 185-190.
  • Van Straalen NM, and Van Vensem J. 1986. Heavy metal content of forest litter arthropods as related to body-size and trophic level. Environmental Pollution 42: 209-221.
  • Zhao FJ, Lombi E, and McGrath SP. 2003. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil 249: 37-43.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-169484a6-1dc1-4753-9a7f-2dd7496c098c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.