PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 64 | 01 |

Tytuł artykułu

Zmiany stezen biologicznie aktywnych skladnikow mleka krowiego wskutek mastitis

Warianty tytułu

EN
Changes in biologically active cow's milk components caused by mastitis

Języki publikacji

PL

Abstrakty

EN
The aim of the review was to describe changes in some chemical components of milk during mastitis. Udder inflammation causes a decrease or increase in biologically active milk components, dependent on the clinical course of the inflammation and its etiological agents. Examinations performed over the last years have mainly focused on cytokines, acute phase proteins, eicosanoids, enzymes and caseinolysis products. The increase of pro-inflammatory cytokines: TNF-α, IL-1β, IL-6, GM-CSF, IL-8, and 11-12 has always been noted in acute forms of mastitis, and is related to an increase of IGF and TGFs, acute phase proteins and bacterial and leukocyte enzymes activity. In mild cases where inflammations are caused by Staph. aureus or Str. uberis, changes in cytokines or growth factors have occurred later and have been less intense. A decrease of casein, lactoalbumin-α, lactoglobulin-p, and vitamins E and C, and triiodothyronine in mastitic milk have also been stated. The increase in NAGase, LDH, serum amyloid A and haptoglobin can indicate both the beginning and intensiveness of the inflammatory process in the mammary gland. Antibacterial components of milk: lactoferrin, lysozyme and lactoperoxidase-thiocyanate-hydrogen peroxide systems do not inhibit bacteria in the inflamed secretion. However, they can indicate the false-positive results of screening tests for antibiotic residues in milk. Somatic cells, bacterial proteases and lipases together with endogenous enzyme plasma hydrolyze casein, gelatin, collagen, hemoglobin, and lactoferrin and secretor cell proteins. The decrease of α-casein, β-casein and lipids and increase of k-casein, protease-peptones and free fatty acids is due to the effect of the inflammatory enzyme’s activity. Independently of bacterial toxins, the presence in fresh milk of higher concentrations of TNF- α and other cytokines, PGF2-α, IGF, BSA, histamine, bradykinin, thiocyanate or lower concentrations of β-casein, lactoalbumin-α, lactoglobulin-p, vitamins E and C or triiodothyronine, that are connected with mastitis can be potentially detrimental both for the health of calves and, above all, for humans.

Wydawca

-

Rocznik

Tom

64

Numer

01

Opis fizyczny

s.14-19,tab.,bibliogr.

Twórcy

autor
  • Panstwowy Instytut Weterynaryjny - Panstwowy Instytut Badawczy, Oddzial w Bydgoszczy, Al.Powstancow Wlkp.10, 85-090 Bydgoszcz
autor

Bibliografia

  • 1. Akerstedt M., Person Waller K., Sternesjo A.: Haptoglobin and serum amyloid A in relation to the somatic cell count in quarter, cow composite and bulk tank milk samples. J. Dairy Res. 2007, 74, 1-6.
  • 2. Alluwaimi A. M., Leutenegger C. M., Farver T. B., Rossitto P. V., Smith W. L., Cullor J. S.: The cytokine markers in Staphylococcus aureus mastitis of bovine mammary gland. J. Vet. Med. B 2003, 50, 105-111.
  • 3. Atroshi F., Rizzo A., Osterman T., Parantainen J.: Free fatty acids and lipid peroxidation in normal and mastitic bovine milk. Zentralbl. Veterinarmed. A 1989, 36, 321-330.
  • 4. Bannerman D. D., Chockalingam A., Paape M. J., Hope J. C.: The bovine innate response during experimentally-induced Pseudomonas aeruginosa mastitis. Vet. Immunol. Immunopth. 2005, 107, 201-215.
  • 5. Bannerman D. D., Paape M. J., Goff J. P., Kimura K., Lippolis J. D., Hope J. C.: Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis. Vet. Res. 2004, 35, 681-700.
  • 6. Bannerman D. D., Paape M. J., Lee J.-W., Zhao X., Hope J. C., Reinard P.: Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diagn. Lab. Immunol. 2004, 11, 463-472.
  • 7. Bansal B. K., Hamann J., Grabowski N. T., Singh K. B.: Variation in the composition of selected milk fraction samples from healthy and mastitic quarters and its significance for mastitis diagnosis. J. Dairy Res. 2005, 72, 144-152.
  • 8. Barbano D. M., Ma Y., Santos M. V.: Influence of raw milk quality on fluid milk shelf life. J. Dairy Sci. 2006, 89, Suppl. 1, E15-19.
  • 9. Batra T. R., Singh K., Ho S. K., Hidiroglou M.: Concentration of plasma and milk vitamin E and plasma beta-carotene of mastitic and healthy cows. Int. Vitam. Nutr. Res. 1992, 62, 233-237.
  • 10. Beasser T. E., Osborn D.: Effect of bovine serum albumin or passive transfer of immunoglobulin G1 to newborn calves. Vet. Immunol. Immunopath. 1993, 37, 321-327.
  • 11. Bell S. J., Grochoski G. T., Clarke A. J.: Health implications of milk containing beta-casein with the A2 genetic variant. Crit. Rev. Food Sci. Nutr. 2006, 46, 93-100.
  • 12. Blum J. W., Baumruckner C. R.: Colostral and milk insulin-like growth factors and related substances: mammary gland and neonatal (intestinal and systemic) targets. Domest. Anim. Endocrinol. 2002, 23, 101-110.
  • 13. Boutet P., Bureou F., Degand G., Lekeux P.: Imbalance between lipoxin A4 and leukotriene B4 in chronic mastitis-affected cows. J. Dairy Sci. 2003, 86, 3430-3439.
  • 14. Bruckmaier R. M.: Gene expression of factors related to immune reaction in response to intamammary Escherichia coli lipopolysaccharide challenge. J. Dairy Res. 2005, 72, 120-124.
  • 15. Carlsson A., Bjorck L., Persson K.: Lactoferrin and lysozyme in milk during acute mastitis and their inhibitory effect in Delvotest P. J. Dairy Sci. 1989, 72, 3166-3175.
  • 16. Chagunga M. G., Larsen T., Bjerring M., Invartsen K. L.: L-lactate dehydrogenase and N-acetyl-beta-D-glucosaminidase activities in bovine milk as indicators of non-specific mastitis. J. Dairy Res. 2006, 73, 431-440.
  • 17. Chockalingam A., Paape M. J., Bannerman D. D.: Increased milk levels of transforming growth factor-α, β1, and β2 during Escherichia coli-induced mastitis. J. Dairy Sci. 2005, 88, 1986-1993.
  • 18. Cifrion E., Guidry A., Marquardt W. W.: Role of milk fractions, serum, and divalent cations in protection of mammary epithelial cells of cows against damage by Staphylococcus aureus toxins. Am. J. Vet. Res. 1996, 57, 308-312.
  • 19. Davis S. R., Farr V. C., Prosser C. G., Nicholas G. D., Turner A. S., Lee J., Hart A. L.: Milk L-lactate concentration is increased during mastitis. J. Dairy Res. 2004, 71, 175-181.
  • 20. Eckersall P. D., Young E. J., McComb C., Hogarth C. J., Safi S., Weber A., McDonald T., Nolan A. M., Fitzpatrick J. L.: Acute phase protein in serum and milk from dairy cows with clinical mastitis. Vet. Rec. 2001, 148, 35-41.
  • 21. Eshraghi H. R., Zeitlin I. J., Fitzpatrick J. L., Ternent H., Logue D.: The release of bradykinin in bovine mastitis. Life Sci. 1999, 64, 1675-1687.
  • 22. Godden S. M., Fetrow J. P., Feirtag J. M., Green L. R., Wells S. J.: Economic analysis of feeding pasteurized nonsaleable milk versus conventional milk replacer to dairy calves. J. Am. Vet. Med. Assoc. 2005, 226, 1547-1554.
  • 23. Hamann J.: Diagnosis of mastitis and indicators of milk quality. Mastitis in dairy production. Current knowledge and future solutions. Wageningen Academic Publishers 2005, 82-90.
  • 24. Hisaeda K., Hagiwara K., Eguchi J., Yamanaka H., Kirisawa R., Iwan H.: Interferon-gamma and tumor necrosis factor alpha levels in sera and whey of cattle with naturally occurring coliform mastitis. J. Vet. Med. Sci. 2001, 63, 1009-1011.
  • 25. Hogarth C. J., Fitzpatrick J. L., Nolan A. M., Young F. J., Pitt A., Eckersall P. D.: Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics 2004, 4, 2094-2100.
  • 26. Kai K., Komine A., Asai K., Kuroishi T., Komine Y., Kozutsumi T., Itagaki M., Ohta M., Endo Y., Kumagai K.: Anti-inflammatory effects of intramammary infusions of glycyrrhyzinin lactating cows with mastitis caused by coagulase-negative staphylococci. Am. J. Vet. Res. 2003, 64, 1213-1220.
  • 27. Kang J. H., Jin J. H., Kondo F.: False positive outcome and drug residue in milk samples over withdrawal times. J. Dairy Sci. 2005, 88, 908-913.
  • 28. Lauberg P., Andersen S., Knudsen N., Ovesen L., Nohr S. B., Bulow Pedersen J.: Thiocyanate in food and iodine in milk: from domestic animal feeding to improved understanding of cretinism. Thyroid 2002, 12, 897-902.
  • 29. Lauzon K., Zhao X., Bouetard A., Delbecchi L., Paquette B., Lacasse P.: Antioxidants to prevent bovine neutrophil-induced mammary epithelial cell damage. J. Dairy Sci. 2005, 88, 4295-4303.
  • 30. Liebe A., Schams D.: Growth factors in milk: interrelationship with somatic cell count. J. Dairy Res. 1998, 65, 93-100.
  • 31. Liu H. C., Chen W. L., Mao S. J.: Antioxidant nature of bovine milk beta-lactoglobulin. J. Dairy Sci. 2007, 90, 547-555.
  • 32. Malinowski E., Kuźma K., Sobolewska S., Kłossowska A.: Aktywność metaboliczna komórek fagocytujących mleka i krwi krów zdrowych i z zapaleniem wymienia. Medycyna Wet. 1998, 54, 321-324.
  • 33. Malinowski E., Lassa H., Kłossowska A., Markiewicz H., Smulski S.: Relationship between mastitis agents and somatic cell count in foremilk samples. Bull. Vet. Inst. Pulawy 2006, 50, 349-352.
  • 34. Malinowski E., Nowak M.: Niebezpieczne drobnoustroje dla wymienia krów i dla ludzi. Lecznica Dużych Zwierząt 2007, 2, 66-71.
  • 35. Maunsell F. P., Morin D. E., Constable P. D., Hurley W. L., McCoy G. C., Kakoma J., Isacson R. E.: Effect of mastitis on the volume and composition of colostrum produced by Holstein cows. J. Dairy Sci. 1998, 81, 1291-1299.
  • 36. Mehrzad J., Desrosiers C., Lauzon K., Zhao X., Lacasse P.: Proteases involved in mammary tissue damage during endotoxin-induced mastitis in dairy cows. J. Dairy Sci. 2005, 88, 211-222.
  • 37. Mehrzad J., Duchateau L., Burvenich C.: High milk neutrophil chemiluminescence limits the severity of bovine coliform mastitis. Vet. Res. 2005, 36, 101-116.
  • 38. Meisel H.: Biochemical properties of peptides encrypted in bovine milk proteins. Curr. Med. Chem. 2005, 12, 1905-1919.
  • 39. Moussaoui F., Michelutti I., Le Roux Y., Laurent F.: Mechanisms involved in milk endogenous proteolysis by a lipopolysaccharide experimental mastitis. J. Dairy Sci. 2002, 85, 2562-2570.
  • 40. Moussaoui F., Vangroenweghe F., Haddadi K., Le Roux Y., Laurent F., Duchateau L., Burvenich C.: Proteolysios in milk during experimental Escherichia coli mastitis. J. Dairy Sci. 2004, 87, 2923-2931.
  • 41. Natale M., Bisson C., Monti G., Peltrau A., Garoffo L. P., Valentini S., Fabris C., Bertino E., Coscia A., Conti A.: Cow's milk allergens identification by two-dimensional immunoblotting ans mass spectrometry. Mol. Nutr. Food Res. 2004, 48, 363-369.
  • 42. Nielsen B. H., Jacobsen S., Andersen P. H., Niewold T. A., Heegaard P. M.: Acute phase protein concentrations in serum and milk from healthy cows, cows with clinical mastitis and cows with extra-mammary inflammatory conditions. Vet. Rec. 2004, 154, 361-365.
  • 43. Nielsen H. J., Larsen T., Bjerring M., Ingvartsen K. L.: Quarter health, milking interval, and sampling time during milking affect the concentration of milk consistents. J. Dairy Sci. 2005, 88, 3186-3200.
  • 44. Persaud D. R., Barranco-Mendoza A.: Bovine serum albumin and insulin-dependent diabetes mellitus; is cow's milk a possible toxicological causative agent of diabetes? Food Chem. Toxicol. 2004, 42, 707-714.
  • 45. Petrovski K. R., Trajcev M., Buneski G.: A review of the factors affecting the costs of bovine mastitis. J. S. Afr. Vet. Assoc. 2006, 77, 53-60.
  • 46. Pfaffl M. W., Wittmann H. H., Meyer D., Bruckmaier R. M.: Gene expression of immunilogically important factors in blood cells, milk cells, and mammary tissue of cows. J. Dairy Sci. 2003, 86, 538-545.
  • 47. Politis J.: Plasminogen activator system: Implication for mammary cell growth and involution. J. Dairy Sci. 79, 1097-1107.
  • 48. Pyörälä S.: Indicators of inflammation in the diagnosis of mastitis. Vet. Res. 2003, 34, 565-568.
  • 49. Pyörälä S., Pyörälä E.: Accuracy of methods using somatic cell count and N-acetyl-beta-D-glucosaminidase activity in milk to assess the bacteriological cure of bovine clinical mastitis. J. Dairy Sci. 1977, 80, 2820-2825.
  • 50. Rambeaud M., Almeida R. A., Pighetti G. M., Oliver S. P.: Dynamics of leucocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet. Immunol. Immunopath. 2003, 96, 193-205.
  • 51. Raulo S. M., Sorsa T., Ternahartiala T., Latvanene T., Pirila E,. Hirvonen J., Maisi P.: Increase in milk metalloproteinase activity and vascular permeability in bovine endotoxin-induced and naturally occurring Escherichia coli mastitis. Vet. Immunol. Immunopath. 2002, 85, 137-145.
  • 52. Roux Le Y., Laurent F., Moussaoui F.: Polymorphonuclear proteolytic activity and milk composition change. Vet. Res. 2003, 34, 629-645.
  • 53. Santos M. V., Ma Y., Barbano D. M.: Effect of somatic cell count on proteolysis and lipolysis in pasteurized fluid milk during shelf-life storage. J. Dairy Sci. 2003, 86, 2491-2503.
  • 54. Schmedt auf der Günne., Tenhagen B.-A., Kutzer P., Forderung D., Heuwiesier W.: Laktoferrin, Lysozym und das Laktoperoxidase-Thiozyanat-Wasserstoffperoxid-System (LPS) als Ursache negativer mikrobiolischer Befunde aus Mastitissekreten? Dtsch. Tierärztl. Wochenschr. 2002, 109, 300-305.
  • 55. Schmitz S., Pfaffl M. W., Meyer H. H., Bruckmaier R. M.: Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis. Dom. Anim. Endocrinol. 2004, 26, 111-126.
  • 56. Spitsberg V. L.: Invited review. Bovine milk fat globule membrane as potential nutraceutical. J. Dairy Sci. 2005, 88, 2289-2294.
  • 57. Steinman G.: Mechanisms of twinning. VII. Effect of diet and heredity on the human twinning rate. J. Reprod. Med. 2006, 51, 405-410.
  • 58. Ślebodziński A., Malinowski E., Lipczak W.: Concentrations of triiodothyronine (T₃), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in milk from healthy and naturally infected quarters of cows. Res. Vet. Sci. 2002, 72, 17-21.
  • 59. Taylor B. C., Keefe R. C., Dellinger J. D., Nakamura Y., Cullor J. S., Stott J. L.: T cell populations and cytokine expression in bovine mammary glands. Cell Immunol. 1997, 182, 68-76.
  • 60. Ushida Y., Shimokawa Y., Toida T., Matsui H., Takase M.: Bovine alpha-lactoglobulin stimulates mucus metabolism in gastric mucosa. J. Dairy Sci. 2007, 90, 541-546.
  • 61. Weiss W. P., Hogan J. S., Smith K. L.: Changes in vitamin C concentrations in plasma and milk from dairy cows after intramammary infusion of Escherichia coli. J. Dairy Sci. 2004, 87, 32-37.
  • 62. Willumsen J. E., Filteau S. M., Coutsoudis A., Uebel K. E., Nowell M. L., Tomkins A. M.: Subclinical mastitis as a risk factor for mother-infant HIV transmission. Adv. Exp. Med. Biol. 2000, 478, 211-223.
  • 63. Zabielski R.: Regulatory peptides in milk, food and the gastrointestinal lumen of young animals and children. J. Anim. Feed Aci. 1998, 7, 65-78.
  • 64. Zank W., Schlatterer B.: Assessment of subacute mammary inflammation by soluble biomarkers in comparison to somatic cell counts in quarter milk samples from dairy cows. Zentralbl. Veterinärmed. 1998, 45, 41-51.
  • 65. Zubeir El J. E., El Owni O. A., Mohamed G. E.: Effect of mastitis on macrominerals of bovine milk and blood serum. J. S. Afr. Vet. Med. Assoc. 2005, 76, 22-25.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-149a76bf-f1aa-4ccf-8018-aca0d56ce86b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.