PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2004 | 46 | 3 |

Tytuł artykułu

Development of a satellite method for Baltic ecosystem monitoring (DESAMBEM) - an ongoing project in Poland

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A large national project: Development of a satellite method for Baltic ecosystem monitoring (DESAMBEM) for creating mathematical models and a complex algorithm for the remote sensing of the Baltic ecosystem and its primary production is described. The final aim of the project is the development of a routine remote sensing methodology for determining characteristics of the Baltic ecosystem such as distribution maps of surface temperature, water transparency, upwelling currents, phytoplankton blooms, radiation balance, pigment concentrations and primary production. The progress of the study and examples of results are presented.

Wydawca

-

Czasopismo

Rocznik

Tom

46

Numer

3

Opis fizyczny

p.445-455,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland
autor
autor

Bibliografia

  • Antoine D., André J.M., Morel A., 1996, Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cy., 10 (1), 56–69.
  • Antoine D., Morel A., 1996, Oceanic primary production: 1. Adaptation of spectral light-photosynthesis model in view of application to satellite chlorophyll observations, Global Biogeochem. Cy., 10 (1), 42–55.
  • Cox C., Munk W.H., 1954, Measurement of the sea surface from photographs of the Sun’s Glitter, J. Opt. Soc. Amer., 44 (11), 838–850.
  • Darecki M., Kaczmarek S., Olszewski J., SeaWiFS chlorophyll algorithms for the Southern Baltic, Int. J. Remote Sens., (in press).
  • Darecki M., Stramski D., 2004, An evaluation of modis and seawifs bio-optical algorithms in the Baltic Sea, Remote Sens. Environ., 89 (3), 326–350.
  • Darecki M., Weeks A., Sagan S., Kowalczuk P., Kaczmarek S., 2003, Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms, Cont. Shelf Res., 23 (3)–(4), 237–250.
  • Dera J., 1995, Underwater irradiance as a factor affecting primary production, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 7, 110 pp.
  • Ficek D., Majchrowski R., OstrowskaM., Kaczmarek S.,Woźniak B., Dera J., 2003, Practical applications of the multi-component marine photosynthesis model (MCM), Oceanologia, 45 (3), 395–423.
  • Kowalewski M., Krężel A., System of authomatic registration and geometric correction of AVHRR data, Arch. Fotogram., Kartogr. Teledet., (in Polish), (in press).
  • Krężel A., 1997, Identification of mesoscale hydrophysical anomalies in a shallow sea with broad-band remote sensing, Wyd. Uniw. Gd., Gdańsk, 173 pp., (in Polish).
  • Krężel A., 2001, Verification of the model of a solar energy radiation input to a sea surface against actinometric data, Oceanol. Stud., 30 (3)–(4), 17–38.
  • Majchrowski R., Ostrowska M., 2000, Influence of photo-an d chromatic acclimation on pigment composition in the sea, Oceanologia, 42 (2), 157–175.
  • Majchrowski R., Woźniak B., Dera J., Ficek D., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 2. Practical applications of the model, Oceanologia, 42 (2), 191–202.
  • Morel A., 1991, Light and marine photosynthesis: a spectral model with geochemical and climatological implications, Prog. Oceanogr., 26, 263–306.
  • Ruddick K. G., Ovidio F., Rijkeboer M., 2000, Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Appl. Optics, 39 (6), 897–912.
  • Sathyendranath S. (ed.), 2000, Remote sensing of ocean colour in coastal, and other optically-complex, waters, IOCCG Rep. No 3, IOCCG Project Office, Dartmouth, Nova Scotia, 140 pp.
  • Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 1. Mathematical apparatus, Oceanologia, 42 (2), 177–190.
  • Woźniak B., Dera J., Ficek D., Majchrowski R., OstrowskaM., Kaczmarek S., 2003, Modelling light and photosynthesis in the marine environment, Oceanologia, 45 (2), 171–245.
  • Woźniak B., Dera J., Ficek D., Ostrowska M., Majchrowski R., 2002, Dependence of the photosynthesis quantum yield in oceans on environmental factors, Oceanologia, 44 (4), 439–459.
  • Woźniak B., Dera J., Koblentz-Mishke O. I., 1992, Bio-optical relationships for estimating primary production in the Ocean, Oceanologia, 33, 5–38.
  • Woźniak B., Dera J., Semovski S., Hapter R., Ostrowska M., Kaczmarek S., 1995, Algorithm for estimating primary production in the Baltic by remote sensing, Stud. i Mater. Oceanol., 68 (8), 91–123.
  • Woźniak S.B., 1996, Mathematical spectral model of solar irradiance reflectance and transmittance by a wind-ruffled sea surface. Part 1. The physical problem and mathematical apparatus, Oceanologia, 38 (4), 447–467.
  • Woźniak S.B., 1997a, Mathematical spectral model of solar irradiance reflectance and transmittance by a wind-ruffled sea surface. Part 2. Modelling results and application, Oceanologia, 39 (1), 17–34.
  • Woźniak S.B., 1997b, Modelling of the environmental factors influence on solar irradiance reflectance and transmittance through the wind-ruffled sea surface, Ocean Optics 13 (G. S. Ackleson & R. Frouin, eds.), Proc. SPIE, 2963, 84–89.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-11742ccc-fc77-4481-8e65-c920d9a2516c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.