PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 42 | 1 |

Tytuł artykułu

Formation and abortion of root nodule primordia in Lupinus luteus L.

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In Lupinus luteus L., infection occurred via the curled root hair. Bradyrhizobia penetrated its cell wall, probably by localized digestion, and then multiplied into the interior of the root hair. Some rhizobia escaped the penetration site before the host cell built a new wall around it. Escaped bacteria passed the distance to the root hair cell base, probably in the space between the cell wall and plasma membrane. At the root hair cell base, cell wall penetration and matrix escape occurred again. After escaping the matrix, rhizobia were endocytotically directed to the interior of the dedifferentiated cortex cell, and during subsequent mitosis were segregated to the proximal derivative. Thus the cell became the bacteroid tissue initial. The bacteria that remained within the penetration site were immobilized here due to the production of cell wall around them. Internalized bacteria were initially associated with large numbers of vesicles bearing cell-wall-like matrix. In abortive primordia the bacteria penetrated the cell walls of competent cells, and associations of bacteria and cell-wall-like matrix surrounded with a membrane were produced. At this stage, symbiosis was arrested and the symbiosomes were degraded. Necrosis or lysis of some primordium cells was observed.

Wydawca

-

Rocznik

Tom

42

Numer

1

Opis fizyczny

p.87-102,fig.

Twórcy

autor
  • Warsaw Agricultural University, Rakowiecka 26-30, 02-528 Warsaw, Poland
autor
autor

Bibliografia

  • Bassett B, Goodman RN, and Novacky A. 1977. Ultrastructure of soybean nodules. I: release of rhizobia from the infection thread. Canadian Journal of Microbiology 23: 573-5882.
  • Bhuvansevari TV, Turgeon BG, and Bauer WD. 1980. Early events in the infection of soybean (Glycine max L. Merr) by Rhizobium japonicum. I. Localization of infectible root cells. Plant Physiology 66: 1027-1031.
  • Boogerd FC, Rossum Van D. 1997. Nodulation of groundnut by Bradyrhizobium: a simple infection process by crack entry. FEMS Microbiology Reviews 21: 5-27.
  • Brewin NJ. 1991. Development of the legume root nodule. Annual Review of Cell Biology 7: 191-226.
  • Brewin NJ, Perotto S, Kannenberg EL, Rae AL, Rathbun EA, Lucas MM, Kardailsky I, Gunder A, Bolanos L, Donovan N, and Drobak BK. 1993. Mechanisms of cell and tissue invasion by Rhizobium leguminosarum: the role of cell surface interactions. In: Nester EW, Verma DPS [eds.], Advances in molecular genetics of plant-microbe interaction, 369-380. Kluwer Academic Publishers.
  • Caetano-Anolles G, Greshoff PM. 1991a. Plant genetic control of nodulation. Annual Review of Microbiology 45: 345-382.
  • Caetano-Anolles G, Greshoff PM. 1991b. Alfalfa controls nodulation during the onset of rhizobium-induced cortical cell division. Plant Physiology 95: 366-373.
  • Callaham DA, Torrey JG. 1981. The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Canadian Journal of Botany 59: 1647-1664.
  • Calvert HE, Pence MK, Pierce M, Malik NS, and Bauer WD. 1984. Anatomical analysis of the development and distribution of Rhizobium infections in soybean roots. Canadian Journal of Botany 62: 2375-2384.
  • Chandler MR. 1978. Some observations on infection of Arachis hypogaea L. by Rhizobium. Journal of Experimental Botany 29: 749-755.
  • Chen H, Rolfe BG. 1988. Rhizobium infection of Leucaena leucocephala via the formation of infection threads in curled root hairs. Journal of Plant Physiology 132: 379-382.
  • Fred EB, Baldwin IL, and McCoy E. 1932. Root nodule bacteria and leguminous plants. University of Wisconsin Studies in Science 5: 1-343.
  • Gage DJ, Bobo T, and Long SR. 1996. Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). Journal of Bacteriology 178: 7159-7166.
  • Golinowski W, Kopcińska J, and Borucki W. 1987. The morphogenesis of lupine root nodules during infection by Rhizobium lupini. Acta Societatis Botanicorum Poloniae 56: 687-703.
  • Higashi S, Kushijama K, and Abe M. 1986. Electron microscopic observations of infection threads in driselase treated nodules of Astragalus sinicus. Canadian Journal of Botany 32: 947-952.
  • Hirsch AM. 1992. Developmental biology of legume nodulation. New Phytologist 122: 211-237.
  • James EK, Minchin FR, Ianetta PPM, and Sprent JI. 1997. Temporal relationships between nitrogenase and intercellular glycoprotein in developing white lupin nodules. Annals of Botany 79: 493-503.
  • Jordan DC, Grinyer J. 1965. Electron microscopy of the bacteroids and root nodules of Lupinus luteus. Canadian Journal of Microbiology 11: 721-725.
  • Libbenga KR, Bogers RJ. 1974. Root-nodule morphogenesis. In: Quispel A [ed.], The biology of nitrogen fixation., 431-472. Amsterdam.
  • Lindstroem K, Lipsanen P. 1988. Properties of Rhizobium galegae and its symbiosis with Galega sp. Journal of Plant Physiology 132: 456-458.
  • Łotocka B, Arciszewska-Kozubowska B, Dąbrowska K, and Golinowski W. 1995. Growth analysis of root nodules in yellow lupin. Annals of Warsaw Agricultural University - SGGW, Agriculture 29: 3-12.
  • Łotocka B, Kopcińska J, and Golinowski W. 1997. Morphogenesis of root nodules in white clover. I. Effective root nodules induced by the wild type of Rhizobium leguminosarum biovar. trifolii. Acta Societatis Botanicorum Poloniae 66: 273-292.
  • Newcomb W, McIntyre L. 1981. Development of root nodules of mung bean (Vigna radiata): a reinvestigation of endocytosis. Canadian Journal of Botany 59: 2478-2499.
  • Newcomb W, Sippel D, and Peterson RL. 1979. The early morphogenesis of Glycine max and Pisum sativum root nodules. Canadian Journal of Botany 57: 2603-2616.
  • Ridge RW, Rolfe BG. 1986. Sequence of events during the infection of the tropical legume Macroptilium atropurpureum Urb. by the broad-host-range, fast-growing Rhizobium ANU240. Journal of Plant Physiology 122: 121-137.
  • Selker JML, Imsande J, and Newcomb EH. 1988. Curled root hairs are a site of entry for Bradyrhizobium infecting hydroponically grown soybean plants with mature root systems. Canadian Journal of Botany 66: 683-686.
  • Smit G, Koster De CG, Schripsema J, Spaink HP, Brussel Van Tan, and Kijne JW. 1995. Uridine, a cell division factor in pea roots. Plant Molecular Biology 29: 869-873.
  • Sprent JI. 1980. Root nodule anatomy, type of export product and evolutionary origin of some Leguminosae. Plant, Cell and Environment 3: 35-43.
  • Sprent JI. 1989. Which steps are essential for the formation of functional legume nodules? New Phytologist 111: 129-153.
  • Strózycki PM, Legocki AB. 1995. Leghemoglobins from an evolutionarily old legume, Lupinus luteus. Plant Science 110: 83-93.
  • Tang C, Robson AD, Dilworth MJ, and Kuo J. 1992. Microscopic evidence on how iron deficiency limits nodule initiation in Lupinus angustifolius L. New Phytologist 121: 457-467.
  • Trinick MJ, Miller C, and Hadobas PA. 1991. Formation and structure of root nodules induced on Macroptilium atropurpureum inoculated with various species of Rhizobium. Canadian Journal of Botany 69: 1520-1532.
  • Turgeon BG, Bauer WD. 1985. Ultrastructure of infection thread development during the infection of soybean by Rhizobium japonicum. Planta 163: 328-349.
  • Vance CP. 1983. Rhizobium infection and nodulation: a beneficial plant disease? Annual Review of Microbiology 37: 399-424.
  • Vance CP, Johnson LEB, Stade S, and Groat RG. 1982. Birds-foot trefoil (Lotus corniculatus) root nodules: morphogenesis and the effect of forage harvest on structure and function. Canadian Journal of Botany 60: 505-518.
  • VandenBosch KA, Bradley DJ, Knox JP, Perotto S, Butcher GW, and Brewin NJ. 1989. Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. The EMBO Journal 8: 335-342.
  • Vasse JM, Billy De F, and Truchet G. 1993. Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. The Plant Journal 4: 555-566.
  • Yang W-C, Blank De C, Meskiene I, Hirt H, Barker J, Kammen Van A, Franssen HJ, and Bisseling T. 1994. Rhizobium Nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. The Plant Cell 6: 1415-1426.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-0da19a02-0092-4558-91d7-0d1c50273eee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.