PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 57 | 4 |

Tytuł artykułu

Exopolysaccharide production by Bacillus strains colonizing packaging foils

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The influence of the chemical composition of medium, availability of glucose and pH on the production of exopolysaccharides (EPS) by different Bacillus strains were investigated. Bacillus strains were isolated from the surface of polyethylene foils modified with mineral compounds after their biodégradation in compost soil. Moreover, the effect of EPS production on bacterial adhesion onto the surface of the materials was examined. The enhanced synthesis of exopolysaccharides in nutrient-starved conditions was revealed. The most effective synthesis of polymers was observed during the logarithmic phase of culture growth. The increased amount of EPS facilitated bacterial adhesion to material surfaces. It was determined that the biofilm on the material surface positively affects its biodégradation. Based on the results, we conclude that the biodégradation of polymers may be accelerated in low-nutrient environment.

Wydawca

-

Rocznik

Tom

57

Numer

4

Opis fizyczny

p.281-287,fig.,ref.

Twórcy

autor
  • Technical University of Lodz, Lodz, Poland
autor
autor

Bibliografia

  • Allison D.G. 1998. Exopolysaccharides production in bacterial biofilm. Biofilm 3: BF98002
  • Allison D.G. and I.W. Sutherland. 1987. The role of exopolysaccharides in adhesion of freshwater bacteria. J. Gen. Microbiol. 133: 1319-1327.
  • Beech LB. 2006. Corrosion of technical materials in the presence of biofilms. Inter. Biodeter. Biodegrad. 58: 89-93.
  • Boza Y., L.P. Neto, F.A.A. Costa and A.R.P. Scamparini. 2004. Exopolysaccharides production by encapsulated Beijerinckia cultures. Process Biochem. 39: 1201-1209.
  • Characklis W.G. and K.E. Cooksey. 1983. Biofilms and microbial fouling. In Laskin A.I. (eds.) Applied Microbiology, vol. 29. Academic Press, New York, p. 93-138.
  • Christensen B.E. 1989. The role of extracellular polysaccharides in biofilms. J. Biotechnol. 10: 181-202.
  • Costerton J.W., K.J. Cheng, G.G. Geesey, T.I. Ladd, J.C. Nickel, M. Dasgupta and T.J. Marrie. 1987. Bacterial biofilms in nature and disease. Ann. Rev. Microbiol. 41: 435-464.
  • Czaczyk K. 2004. Factors affecting the adhesion of microorganisms to solid surface (in Polish). Post. Mikrobiol. 43: 267-283.
  • Czaczyk K. and K. Myszka. 2004. Biosynthesis of exopolysaccharides and their role in the adhesion of Bacillus megaterium to a stainless steel surface, (in Polish). Żywn. Technol. Jakoś. 3: 27-36.
  • Czaczyk K., K. Myszka and A. Mueller. 2005. The effect of nutrient availability on biosynthesis of extracellular polysaccharides by Bacillus spp. and its role in adhesion. Folia Univ. Agric. Stetin. 246: 33-46.
  • Ford T. and R. Mitchell. 1990. The ecology of microbial corrosion. Adv. Microb. Ecol. 11: 231-261.
  • Flemming H.C. 1998. Relevance of biofilms for the biodegradation of surfaces of polymeric materials. Polymer Degrad. Stabil. 59: 309-315.
  • Frřlund, B., R. Palmgren, K. Keiding and P.H. Nielsen. 1996. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 30: 1749-1758.
  • Gandhi H.P., R.M. Ray and R.M. Patel. 1997. Exopolymer production by Bacillus species. Carbohydr. Polymer. 34: 323-327.
  • Gilan L, Y. Hadar and A. Sivan. 2004. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl. Microbiol. Biotechnol. 65: 97-104.
  • Gu J.D., M. Roman, T. Esselman and R. Mitchell. 1998. The role of microbial biofilms in deterioration of space station candidate materials, Inter. Biodeter. Biodegrad. 41: 25-33.
  • Hall-Stoodley L. and P. Stoodley. 2002. Developmental regulation of microbial biofilms. Curr. Opin. Biotechnol. 13: 228-233.
  • Horan N.J. and C.R. Eccles. 1986. Purification and characterization of extracellular polysaccharide from activated sludge. Water Res. 20: 1427-1432.
  • Humphrey B., Kjelleberg S., Marshall K.C. 1983. Responses of marine bacteria under starvation conditions at a solid-water interface. Appl. Environ. Microbiol. 45: 43-47.
  • Langille S.E., G.G. Geesey and R.M. Weiner. 2000. Polysaccharide-specific probes inhibit adhesion of Hyphomonas rosenbergii strain VP-6 to hydrophilic surfaces. J. Ind. Microbiol. Biotechnol 25: 81-85
  • Liu Y.Q., Y. Liu and J.H. Tay. 2004. The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl. Microbiol. 54: 46-62.
  • Majumdar I., F. D'Souza and N.B. Bhosle. 1999. Microbial exopolysaccharides: Effects on corrosion and partial chemical characterization. J. Indian Inst. Sci. 79: 539-550.
  • Marshall K.C., R. Stout and R. Mitchell. 1971. Mechanism of the initial events in the sorption of marine bacteria to surfaces. J. Gen. Microbiol. 68: 337-348.
  • Morikawa M. 2006. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J. Biosci. Bioeng. 101: 1-8.
  • Olofsson A.C, M. Hermansson and H. Elwing. 2003. N-Acetyl-L-cysteine affects growth, extracellular polysaccharides production, and bacterial biofilm formation on solid surfaces. Appl. Environ. Microbiol. 69: 4814-4822.
  • Parkar S.G., S.H. Flint, J.S. Palmer and J.D. Brooks. 2001. Factors influencing attachment of thermophilic bacilli to stainless steel. J. Appl. Microbiol. 90: 901-908.
  • Pratt L.A. and R. Kolter 1999. Genetic analyses of bacterial biofilm formation. Curr. Opin. Microbiol. 2: 598-603.
  • Rijnaarts H.H.M., W. Norde, E.J. Bouwer, J. Lyklema and A.J.B. Zehnder. 1995. Reversibility and mechanism of bacterial adhesion. Colloid. Surface 4: 5-22.
  • Sivan A., M. Szanto and V. Pavlov. 2006. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl. Microbiol. Biotechnol. 72: 346-352.
  • Sheng CP., H.Q. Yu and Z. Yue. 2006. Factors influencing the production of extracellular polymeric substances by Rhodopseudomonas acidophila. Inter. Biodeter. Biodegrad. 58: 89-93.
  • Stretton S., S.J. Danon, S.M. Kjelleberg, and A.E. Goodman. 1997. Changes in cell morphology and motility in the marine Vibrio spp. Strain S14 during conditions of starvation and recovery. FEMS Microbiol. Lett. 146: 23-29.
  • Sutherland I.W. 1980. Polysaccharides in the adhesion of marine and freshwater bacteria. In: Microbial Adhesion to Surfaces, Berkeley R. C. W., Lynch J. M., Melling J., Rutter P. R. and Vincent B. (eds), Ellis Horwood Publ., Chichester, UK, p. 329-338.
  • Sutherland I.W. 1982. Biosynthesis of microbial exopolysaccharides. Adv. Microb. Physiol. 23: 79-100.
  • Sutherland I.W. 1999. Polysaccharases for microbial exopolysaccharides. Carbohydr. Polym. 38: 319-328.
  • Sutherland I.W. 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147: 3-9.
  • Szumigaj J., Z. Żakowska, L. Klimek and A. Bartkowiak. 2005. Biodegradation of polymer packaging foils. Ann. Pol. Chem. Soc. 1: 520-524.
  • Tsuneda S., H. Aikawa, H. Hayashi, A. Yuasa and A. Hirata. 2003. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol. Lett. 223: 287-292.
  • Wang Z.W., Y. Liu and J.H. Tay. 2007. Biodegradability of extracellular polymeric substances produced by aerobic granules. Appl. Microbiol. Biotechnol. 74: 462-466.
  • Zhang X. and P.L. Bishop. 2003. Biodegradability of biofilm extracellular polymeric substances. Chemosphere 50: 63-69.
  • Yeo Y., N. Jang, J. Cho, K.S. Kim and I.S. Kim. 2007. Identification of the effect of extracellular polymeric substances on bacterial adhesion to the membrane surface in a membrane bioreactor using Pseudomonas fluorescens. Water Sci. Tech. 55: 35-42.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-06076bf3-dd95-401f-9a12-a97d0cc3ce5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.