PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 42 | 4 |

Tytuł artykułu

Ergosterol biosynthesis inhibition: a target for antifungal agents

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The isoprenoid sterols play a crucial role in the viability of all fungi; those unable to synthesise ergosterol because of inhibition, growth conditions or mutation must take it up from the environment. A range of compound types have been discovered which interfere with the biosynthetic pathway from acetate to ergosterol and these compounds have antifungal actions. Inhibition of several of the steps has yielded agents which have been used with great success as medical and agrochemical agents. The most important biosynthetic steps that have been exploited are inhibition of squalene epoxidase, (the allylamines and tolnaftate) C14 demethylation (the azoles), A7,8 isomerase and A14 reductase which are inhibited by the morpholines. Recent research has shown that inhibition of C24 methyltransferase and C4 demethylation also yield antifungal agents. Combination studies demonstrate that synergy between agents of different types can be measured. Fungicidal effects were observed when a combination of two fungistatic agents was used.

Wydawca

-

Rocznik

Tom

42

Numer

4

Opis fizyczny

p.465-479,fig.

Twórcy

  • ZENECA Pharmaceuticals, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K.
autor

Bibliografia

  • 1. Block, K, (1979) Speculations on the evolution of sterol structure and function. CRC Crit. Rev. Biochem. 91,1-5.
  • 2. Block, K. (1981) Sterol structure and membrane function. Curr. Top. Cell. Regul. 18,289-299.
  • 3. Nés, W.R., Sekula, B.C., Nes, W.D. & Adler, J.H. (1978) The functional importance of structural features of ergosterol in yeast. J. Biol. Chem. 253, 6218-6225.
  • 4. Rodriguez, R.J., Taylor, F.R. & Parks, L.W. (1982) A requirement for ergosterol to permit growth of yeast sterol auxotrophs on cholesterol. Biochem. Biophys. Res. Commun. 106,435-441.
  • 5. Parks, L.W., Lorenz, R.T. & Casey, W.M. (1992) Functions for sterols in yeast membranes; in Emerging Targets in Antibacterial and Antifungal Chemotherapy (Sutcliffe, J., Georgopapadakou, N.H., eds.) pp. 393-409, Chapman and Hall, New York.
  • 6. Hamilton-Miller, J.M.T. (1973) Chemistry and biology of the polyene rnacrolide antibiotics. Bacteriol. Rev. 37,166-196.
  • 7. Sisler, H.D., Walsh, R.C. & Ziogas, B.N. (1983) Ergosterol biosynthesis a target for fungitoxic action; in Proceedings of the Fifth International Congress of Pesticide Chemistry (Miyamo, J. & Kearney, P.C., eds.) vol 3, pp. 6218-6225, Pergamon Press, Elmsford.
  • 8. Barrett-Bee, K., Lane, A.C. & Turner, R.W. (1986) The mode of antifungal action of tolnaftate. j. Med. Vet. Mycol. 24,155-160.
  • 9. Lees, N.D., Skaggs, B. Kirsch, D.R. & Bard, M. (1995) Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cere- visiae — A review. Lipids 30, 221 -226.
  • 10. Popjak, G. & Agnew, W.S. (1978) Squalene synthase. Mol. Cell Biochem. 27,97-116.
  • 11. Oehlschager, A.C. & Czyzewska, E. (1992) Rationally designed inhibitors of sterol biosynthesis; in Emerging Targets for Antibacterial and Antifungal Chemotherapy (Sutcliffe, J. & Georgopapadakou, N.H., eds.) pp. 437-^£75, Chapman and Hall, New York.
  • 12. Poulter, C.D. (1990) Isopentenyl diphosphate to squalene-enzymology and inhibition; in Biochemistry of cell walls and membranes in fungi (Kuhn, P.J., Trinci, A.J.P, Jung, M.J., Goosey, M.W. & Copping, L.G., eds.) pp. 169-188, Springer Verlag, Berlin.
  • 13. Bergstrom,J.D., Kurtz, M.M., Rew, D.]., Amend, A.M., Karkas, J.D., Bostedor, R.G., Bansal, V.S., Dufrene, C. & Van Middlesworth, F.L. (1993) Zaragosic acids: A family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc. Natl. Acad. Sci. U.S.A. 90, 80-84. '
  • 14. Harris, G.H., Jones, E.T.T., Meinz, M.S., Nallin-Omsted, M., Helms, G.L., Bills, G.F., Zink, D. & Wilson, K.E. (1993) Isolation and structure determination of viridofungins A, B, and C. Tetrahedron Lett. 34, 5235-5238.
  • 15. Ryder, N.S. (1990) Squalene epoxidase — enzymology and inhibition; in Biochemistry of cell walls and membranes of fungi (Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W. & Copping, L.G., eds.) pp. 189-203, Springer- -Verlag, Berlin.
  • 16. Georgopoulos, A., Petranyi, G., Mieth, H. & Drews, J. (1981) In vitro activity of naftifine, a new antifungal agent. Antimicrob. Agents Chemo­ther. 19, 386-389.
  • 17. Specific inhibition of hingal sterol biosynthesis by SF 86-327, a new allyl- amine antimycotic agent. Antimicrob. Agents Chemother. 27,252-256.
  • 18. Ryder, N.S. & Dupont, M.C. (1985) Inhibition of squalene epoxidase by allylamine antimycotic compounds, a comparative study of the fungal and mammalian enzymes. Biochem. ]. 230, 765-770.
  • 19. Ryder, N.S. (1987) Squalene epoxidase as the target of antifungal allylamines. Pestic. Sci. 21, 281-288.
  • 20. Ryder, N.S. (1990) Inhibition of squalene epoxidase and sterol side-chain methylation by allylamines. Biochem. Soc. Trans. 18,45-46.
  • 21. Morita, T. & Nozawa, Y. (1985) Effects of anti­fungal agents on ergosterol biosynthesis in Candida albicans and Trichophyton mentagro- phytes, differential inhibitory sites of naphthio- mate and miconazole. }. Invest. Dermatol. 85, 434-437.
  • 22. Ryder, N.S., Frank, I. & Dupont, M.C. (1986) Ergosterol biosynthesis inhibition by the thio- carbamate antifungal agents tolnaftate and tolciclate. Antimicrob. Agents Chemother. 29, 858-860.
  • 23. Morita, T., Iwata, K. & Nozawa, Y. (1989) Inhi­bitory effect of a new antimycotic agent, piritetrate, on ergosterol biosynthesis in patho­genic fungi. J. Med. Vet. Mycol. 27,17-25.
  • 24. Delprino, L., Balliano, G., Cattel, L., Benveniste, P. & Bouvier, P. (1983) Inhibition of higher plant 2,3-oxidosqualene cyclase by 2-aza-2,3-dihy- drosqualene and its derivatives. ]. Chem. Soc. Chern. Commun. 381-382.
  • 25. Ryder, N.S., Dupont, M.C. & Frank, I. (1986) Inhibition of fungal and mammalian sterol bio­synthesis by 2-axa-2,3-dihydrosqualene. FEBS Lett. 204, 239-242.
  • 26. Sen, S.E. & Preslwich, G.D. (1989) Trisnor- squalene cyclopropylamine, a reversible, tight- -binding inhibitor of squalene epoxidase. J. Am. Chem. Soc. Ill, 8761-8763.
  • 27. Catell, L., Ceruti, M., Balliano, G., Viola, F., Grosa, G. & Schuber, F. (1989) Drug design based on biosynthetic studies, synthesis, biological activity, and kinetics of new inhi­bitors of 2,3-oxidosqualene cyclase and squalene epoxidase. Steroids 53, 363-391.
  • 28. Sen, S.E. & Prestwich, G.D. (1989) Trisnorsqu- alene alcohol, a potent inhibitor of vertebrate squalene epoxidase. /. Am. Chem. Soc. Ill, 1508- 1510.
  • 29. Sen, S.E., Wawrzenczyk, C. & Prestwich, G.D. (1990) Inhibition of vertebrate squalene epo­
  • 30. xidase by extended and truncated analogues of trisnorsqualene alcohol. /. Med. Chem. 33, 1698-1701.
  • 31. Corey, E.J., Ortiz de Montellano, PR., Lin, K. & Dean, P.D.G. (1967) 2,3-Iminosqualene, a potent inhibitor of the enzymatic cyclization of 2,3- -oxidosqualene to sterols. /. Am. Chem. Soc. 89, 2797-2798.
  • 32. Cattel, L., Ceruti, M., Viola, F., Delprino, L., Balliano, G., Duriatti, A. & Bouvier-Nave, P. (1986) The squalene-2,3-epoxide cyclase as a model for the development of new drugs. Lipids 21,31-38.
  • 33. Duriatti, A., Bouvier-Nave, P., Benveniste, P., Schuber, R, Delprino, L., Balliano, G. & Cattel, L. (1985) In vitro inhibition of animal and higher plants 2,3-oxidosquaIene-steroI cyclases by 2- -aza-2,3-dihydrosqualene and derivatives, and by other ammonium-containing molecules. Biochem. Pharmacol. 34, 2765-2777.
  • 34. Ceruti, M., Viola, F., Balliano, G., Grosa, G., Caputo, P. & Gerst, N. (1988) Synthesis of a squalenoid oxaziridine and other new classes of squalene derivatives, as inhibitors of sterol biosynthesis. Eur.}. Med. Chem. 23,533-537.
  • 35. Balliano, G., Viola, F., Ceruti, M. & Cattel, L. (1988) Inhibition of sterol biosynthesis in Saccharomyces cerevisiae by N,N-diethylaza- squaleneand derivatives. Biochim. Biophys. Acta 959, 9-19.
  • 36. Atkin, S.D., Morgan, B., Baggaley, K.H. & Green, J. (1972) The isolation of 2,3-oxidosqualene from the liver of rats treated with 1-dodecyl- imidazole, a novel hypochole-sterolaemic agent. Biochem. }. 130,153-157.
  • 37. Henry, M.J. & Sisler, H.D. (1979) Effects of miconazole and dodecylimidazole on sterol biosynthesis in Ustilago maydis. Antimicrob. Agents Chemother. 15, 603-607.
  • 38. Mercer, E.I., Morris, P.K. & Baldwin, B.C. (1985) Differences in the inhibitory effects of N-( 1- -n-dodecy!)-heterocycles on the 2,3-oxido- squalene Ianoslerol-cyclase of rat liver and yeast. Comp. Biochem. Physiol. 80B, 341-346.
  • 39. Aoyama, Y., Yoshida, Y. & Sato, R. (1984) Yeast cytochrome P-450 catalysing lanosterol 14a-demelhylation. /. Biol. Chem. 259, 1661- -1666.
  • 40. Barrett-Bee, K., Lees, ]., Pinder, P.E., Campbell, J. & Newboult, L. (1988) Biochemical studies with a novel antifungal agent ICI195, 739. Ann. N.Y. Acad. Sci. 544, 231-244.
  • 41. Barrett-Bee, K., Newboult, L. & Pinder, P.E. (1991) Biochemical changes associated with the antifungal action of the triazole ICI, 153066 on Candida albicans and Trichophyton quinckeanum. FEMS Lett. 79 127-132.
  • 42. Yeagle, P.L., Martin, R.B., Lala, A.K., Lin, H.K. & Bloch, K. (1977) Differential effects of cholesterol and lanosterol on artificial membranes. Proc. Natl. Acad. Sci. U.S.A. 74,4924-4926.
  • 43. Vanden Bossche, H., Willemsens, G. Marichal, P. Cools, W. & Lauwers, W. (1985) The molecular basis for the antifungal activation of N-substi~ tuted azole derivatives; in Mode of Action of Anti­fungal Agents (Trinci, A.P.J & Ryley, J.F., eds.) pp. 321-341, Cambridge University Press, Cambri­dge.
  • 44. Kerkenaar, A. & Barug, D. (1984) Fluorescence microscope studies of Ustilago maydis and Penicillium italicum after treatment with imazalil and fenpropimorph. Pestic. Sci. 15, 199-205.
  • 45. Vanden Bossche, H. (1974) Biochemical effects of miconazole on fungi. 1. Effects on the uptake and/or utilisation of purines, pyrimidines, amino acids and glucose by Candida albicans. Biochem. Pharmacol. 26, 887-899.
  • 46. Odds, F. (1988) Candida and Candidosis, 2nd ed. Bailliere Tindall, London.
  • 47. Borgers, M. (1985) Antifungal azole derivatives; in Scientific basis of antimicrobial chemotherapy (Greenwood, D. & O'Grady, F., eds.) pp. 133- -153, Cambridge University Press, Cambridge.
  • 48. Hitchcock, C.A., Russell, N.J. & Barrett-Bee, K. (1989) The lipid composition and permeability to the triazole antifungal antibiotic ICI153,066 of serum grown mycelial cultures of C, albicans. J. Gen. Microb. 135,1949-1955.
  • 49. Bcrgers, M., DeBrabander, M., Vanden Bossche, H. & Van Cutsem, J. (1979) Promotion of p5 eudomycelium formation of Candida albicans in culture: A morphological study of the effects of miconazole and ketoconazole. Postgrad. Med. /. 55, 687-691.
  • 50. Barrett-Bee, K. &c Pinder, P.E. (1984) Resistance to ergosterol biosynthesis inhibitors observed in several fungal species; in Proceedings of FEMS Symposium, The development of antifungal agents (Nombela, C., ed.) p. 139, S.E.M. Madrid.
  • 51. Hitchcock, C.A. (1993) Resistance of Candida albicans to azole antifungal agents. Biochem. Soc. Trans. 21,1039-1048.
  • 52. Joseph-Home, T., Manning, N.J., Hollman, D. & Kelly, S.L. (1995) Defective sterol A5(6) desa- turase as a cause of azole resistance in Ustilago maydis. FEMS Microbiol. Lett. 127, 29-34.
  • 53. Aoki, Y., Yamazaki, T., Kondoh, M., Sudoh, Y., Nakayama, N., Sekine,Y., Shimada, H. & Ari- sawa, M. (1992) A new series of natural anti­fungals that inhibit P-450 lanosterol C-14 deme-
  • 54. thylase: II Mode of action. J. Antibiot. 45, 160- -170.
  • 55. Miller, W.L. & Gaylor, J.L. (1970) Investigation of the component reactions of oxidative sterol demethylation. }. Biol. Chem. 245,5369-5374 and 5375-5381.
  • 56. Kutcha, T., Leka, C., Frakas, P., Bujdakova, H„ Belajova, E. & Russel, N.J. (1995) Inhibition of sterol 4-demethylation in Candida albicans by 6-amino-2-n-pentylthiobenzthiazoIe, a novel mechanism of action for an antifungal agent. Antimicrob. Agents Chemother. 39,1538-1541.
  • 57. Bujdakova, H. & Muckova, M. (1994) Antifun­gal activity of a new benzothiazole derivative against Candida in vitro and in vivo Int. J. Anti­microb. Agents 4,303-308.
  • 58. Lee, W.H., Lutsky, B.N. & Schroepfer, G.S. (1969) 5a cholest-8(14)-en~3b-ol, a possible interme­diate in the biosynthesis of cholesterol. J. Biol. Chem. 244, 5440-5448.
  • 59. Kerkanaar, A. (1987) The mode of action of dimethylmorpholines; in Recent trends in the discovery, development and evaluation of antifungal agents (Fromtling, R.A., ed.) pp. 523-542, J.R. Prous Science, Barcelona.
  • 60. Walsh, R.C. & Sisler, H.D. (1982) A mutant of Ustilago maydis deficient in sterol carbon-14 demethylation characteristics and sensitivity to inhibitors of ergosterol biosynthesis. Pestic. Biochem. Physiol. 18,122-131.
  • 61. Boyle, F.T. (1990) Drug discovery: a chemists approach; in Chemotherapy of Fungal Diseases, Handbook of Experimental Pharmacology (Ryley, J.F., ed.) vol. 96, pp. 3-30, Springer Verlag, Berlin.
  • 62. Mariceau, C, Guyonnet, D. & Karst, F. (1992) Construction and growth properties of a yeast strain defective in sterol 14-reductase. Curr. Genet. 22,267-273.
  • 63. Baloch, R.I., Mercer, E.I., Wiggins, T.E. & Baldwin, B.C. (1984) Inhibition of ergosterol biosynthesis in Saccharomyces cerevisiae and Ustilago maydis by tridemorph, fenpropimorph and fenpropidin. Phytochemistry 23, 2219-2226.
  • 64. Sobus, M.T., Holmund, C.E. & Whittaker, N.F. (1977) Effects of the hypocholesterolemic agent trifluperidol on the sterol steryl ester and fatty acid metabolism of Saccharomyces cerevisiae. /. Bacterid. 130,1310-1316.
  • 65. Barrett-Bee, K. & Ryder, N. (1992) Biochemical aspects of ergosterol biosynthesis inhibition; in Emerging Targets for Antibacterial and Antifungal Chemotherapy (Sutcliffe, J. & Georgopapadakou, N.H., eds.) pp. 410-436, Chapman and Hall, New York.
  • 66. Arthington, B.A., Hoskins, J., Skatrud, P.L. & Bard, M. (1991) Nucleotide sequence of the gene encoding yeast C-8 sterol isomerase. Gene 107, 173-174.
  • 67. Parks, L.W. (1958) S-Adenosylmethionine and ergosterol synthesis. J. Am. Chem. Soc. 80, 2023-2024.
  • 68. Gordee, R.S. & Butler, T.F. (1973) A9145 a new adenine-containing antifungal antibiotic. II. Biological activity. J. Antibiot. 26,466-470.
  • 69. Counsell, R.E., Klimstra, P.D., Ranney, R.E. & Cook, D.L. (1962) Hypocholesterolemic agents. 1. 20a-(2-diaIkyIaminoethyl)aminopregn-5-en- 3a-o! derivatives. J. Med. Pharm. Chem. 5, 720- -729.
  • 70. Akhtar, M., Munday, K.A., Rahimtula, A.D., Watkinson, I.A. & Wilton, D.C. (1969) Mechanism of reduction of double bonds in biological systems, conversion of desmosterol into cholesterol. Chem. Commun. 1287-1288.
  • 71. Alor, M.A., Schmidt, S.J., Adams, J.L. & Dolle, R.E. (1989) Mechanism and inhibition of A24-sterol methyltransferase from Candida albicans and Candida tropicalis. Biochemistry 28, 9633-9640.
  • 72. Parks, L.W., Crowley, J.H., Smith, S.J., Leak, F.W. & Palermo, L.M. (1995) The functions of sterols in antifungal control; in Discovery and Mode of Action of Antifungal Agents (Dixon, G.K, Cop­ping, L.G. & Hollman, D.W., eds.) Bios Scientific, Oxford (in press).
  • 73. Sud, I.J. & Feingold, D.S. (1985) Effect of ketoconazole in combination with other inhibitors of sterol synthesis on fungal growth. Antimicrob. Agents Chemother. 28, 532-534.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-02429708-fc81-49ae-9378-9cdf8c5773fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.