EN
The effects of inorganic nutrients (N, P) enrichment of mesotrophic lake water on changes in bacterial and protistan (heterotrophic nanoflagellates and ciliates) communities compositions were studied in the mesocosm experiment. Phosphorus (PO₄³⁻) and nitrogen (NH₄⁺) alone and in combination were added to three types of experimental mesocosms. Mesocosms results suggested that simultaneous addition of P and N stimulated phytoplankton growth and production rates of bacterial biomass its turnover rate. Strong positive correlations between chlorophyll a and bacterial secondary production rates suggested that bacteria were mainly controlled by organic substrates released in course of phytoplankton photosynthesis. Both nutrients increased distinctly protistan biomass and resulted in the shift in ciliate community composition from algivorous to large omnivorous species. The response of bacterial numbers and biomass to nutrients addition was less evident. However, intensive grazing caused their dynamic changes. Fluorescence in situ hybridization (FISH) revealed only small changes in bacterial taxonomic composition. There was an apparent shift in dominance from Cytophaga-Flavobacterium to the Alphaproteobacteria group in the mesocosm with simultaneous addition of P and N, which positively related to increased abundance of bacterivorous protists. Experiment demonstrated that inorganic N and P nutrients directly influenced the bottom-down control of microbial communities, which had a crucial effect on morphological diversity of bacteria.