PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 63 | 4 |

Tytuł artykułu

Nodulation competitiveness of Ensifer meliloti alfalfa nodule isolates and their potential for application as inoculants

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Alfalfa (Medicago sativa) is a widely cultivated legume, which enters into nitrogen-fixing symbiosis with Ensifer (Sinorhizobium) spp. In this study, an autochthonous rhizobial population of Ensifer sp. occupying alfalfa nodules grown in arable soil was used as the basis for selection of potential inoculants. Alfalfa nodule isolates were identified as Ensifer meliloti by partial 16S rDNA, recA, atpD and nodC nucleotide sequencing. The sampled isolates displayed different symbiotic performance and diversity in the number of plasmids and molecular weight. Isolates that were the most efficient in symbiotic nitrogen fixation were tagged with a constitutively expressed gusA gene carried by a stable plasmid vector pJBA21Tc and used in competition experiments in soil under greenhouse conditions. Two E. meliloti strains LU09 and LU12, which effectively competed with indigenous soil rhizobia, were selected. The metabolic profiles of these selected strains showed differences in the use of carbon and energy sources. In addition, the LU09 strain exhibited bacteriocin production and LU12 mineral phosphate solubilization, which are valuable traits for soil survival. These strains may be considered as potential biofertilizers for alfalfa cultivation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

4

Opis fizyczny

p.375–386,fig.,ref.

Twórcy

  • Department of Genetics and Microbiology, University of M.Curie-Sklodowska, Lublin, Poland
autor
  • Department of Genetics and Microbiology, University of M.Curie-Sklodowska, Lublin, Poland
autor
  • Department of Biochemistry, University of M.Curie-Sklodowska, Lublin, Poland
autor
  • Department of Genetics and Microbiology, University of M.Curie-Sklodowska, Lublin, Poland

Bibliografia

  • Aoki S., S. Nakata, T. Kajita and M. Ito. 2010. Genotypic and phenotypic diversity of rhizobia isolated from Lathyrus japonicus indigenous to Japan. Syst. Appl. Microbiol. 33: 383–397.
  • Baldani J.I., R.W. Weaver, M.F. Hynes and B.D. Eardly. 1992. Utilization of carbon substrates, electrophoretic enzyme patterns, and symbiotic performance of plasmid-cured clover rhizobia. Appl. Environ. Microbiol. 58: 2308–2314.
  • Barnett M.J., R.F. Fisher, T. Jones, C. Komp, A.P. Abola, F. Barloy-Hubler, L. Bowser, D. Capela, F. Galibert, J. Gouzy and others. 2001. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc. Natl. Acad. Sci. U.S.A. 98: 9883–9888.
  • Bringhurst R.M., Z.G. Cardon and D.J. Gage. 2001. Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc. Natl. Acad. Sci. USA 98: 4540–4545.
  • Brockwell J. 1982. Plant-infection counts of rhizobia in soils,pp. 41–58. In: Vincent JM (ed.), Nitrogen fixation in legumes. Academic Press Australia, Sydney 1982.
  • Brockwell J., P.J. Bottomley and J.E. Thies. 1995. Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174: 143–180.
  • Bromfield E.S.P., J.T. Tambong, S. Cloutier, D. Prévost, G. Laguerre, P. van Berkum, T.V. Tran Thi, R. Assabgui andL.R. Barran. 2010. Ensifer, Phyllobacterium and Rhizobium species occupy nodules of Medicago sativa (alfalfa) and Melilotus alba (sweet clover) grown at a Canadian site without a history of cultivation. Microbiology 156: 505–520.
  • Broughton W.J., N. Heycke, U. Priefer, G.M. Schneider andJ. Stanley. 1987. Ecological genetics of Rhizobium meliloti: diversity and competitive dominance. FEMS Microbiol. Lett. 40: 245–249.
  • Calvert H.E., M.K. Pence, M. Pierce, N.S.A. Malik and W.D. Bauer. 1984. Anatomical analysis of the development and distribution of Rhizobium infections in soybean roots. Can. J. Bot. 62: 2375–2384.
  • Depret G. and G. Laguerre. 2008. Plant phenology and genetic variability on root and nodule development strongly influence genetic structuring of Rhizobium leguminosarum biovar viciae populations nodulating pea. New Phytol. 179: 224–235.
  • Ding H., C.B. Yip, B.A. Geddes, I.J. Oresnik and M.F. Hynes. 2012. Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation. Microbiology 58: 1369–1378.
  • Eckhardt T. 1978. A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1: 584–588.
  • Felsenstein J. 1985. Phylogenies and the comparative method. American Naturalist 125: 1–15.
  • Gaunt M.W., S.L. Turner, L. Rigottier-Gois, S.A. Lloyd-Macgilps and J.P.W. Young. 2001. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Intern. J. Syst. Evol. Microbiol. 51: 2037–2048.
  • Gaworzewska E.T. and M.J. Carlile. 1982. Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants. J. Gen. Microbiol. 128: 1179–1188.
  • Herridge D.F., M.B. Peoples and R.M. Boddey. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311: 1–18.
  • Hynes M.F. and M.P. O’Connel. 1990. Host plant effect on competition among strains of Rhizobium leguminosarum. Can. J. Microbiol. 36: 864–869.
  • Jones K.M., H. Kobayashi, B.W. Davies, M.E. Tagaand, G.C. Walker. 2007. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat. Rev. Microbiol. 5: 619–633.
  • Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.
  • Laguerre G., K. Heulin-Gotty, B. Brunel, A. Klonowska, A. Le Quéré, P. Tillard, Y. Prin, J. Cleyet-Marel and M. Lepetit. 2012. Local and systemic N signaling are involved in Medicago truncatula preference for the most efficient Sinorhizobium symbiotic partners. New Phytologist 195: 437–449.
  • Laguerre G., P. Louvrier, M.R. Allard and N. Amarger. 2003. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes. Appl. Environ. Microbiol. 69: 2276–2283.
  • Laguerre G., P. Mavingui, M.R. Allard, M.P. Charnay, P. Louvrier, S.I. Mazurier, L. Rigottier-Gois and N. Amarger. 1996. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl. Environ. Microbiol. 62: 2029–2036.
  • Li D.M. and M. Alexander. 1986. Bacterial growth rates and competition affect nodulation and root colonization by Rhizobium meliloti. Appl. Environ. Microbiol. 52: 807–811.
  • Lodwig E. and P. Poole. 2003. Metabolism of Rhizobium bacteroids. Critic. Rev. Plant Sci. 22, 37–78.
  • Louws F.J., D.W. Fulbright and C.T. Stephens. 1994. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol. 60: 2286–2295.
  • Martinez-Romero E. and J. Caballero-Mellado. 1996. Rhizobium phylogenies and bacterial genetic diversity. Crit. Rev. Plant Sci. 15: 113–140.
  • Martyniuk S., J. Oroń and M. Martyniuk. 2005. Diversity and numbers of root-nodule bacteria (rhizobia) in Polish soils. Acta Soc. Bot. Polon. 74: 83–86.
  • Martyniuk S., A. Woźniakowska, M. Martyniuk and J. Oroń. 2000. A new sand pouch-plant infection technique for enumeration of rhizobia in soil. Acta Soc. Bot. Polon. 69: 257–261.
  • Masson-Boivin C., E. Giraud, X. Perret and J. Batut. 2009. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol. 17: 458–466.
  • Mathesius U., J.J. Weinmann, B.G. Rolfe and M.A. Djordjevic. 2000. Rhizobia can induce nodules in white clover by “hijacking” mature cortical cells activated during lateral root development. Mol. Plant Microbe Interact. 13: 170–182.
  • Miller L.D., C.K. Yost, M.F. Hynes and G. Alexandre. 2007. The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation. Mol. Microbiol. 63: 348–362.
  • Oresnik I.J., L.A. Pacarynuk, S.H.P. O’Brien, C. Yost andM.F. Hynes. 1998. Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol. Plant Microbe Interact. 11: 1175–1185.
  • Palacios R. and W.E. Newton. 2005. Genomes and genomics of nitrogen-fixing organisms. Springer, Dordrecht.
  • Perret X., C. Staehelin and W. Broughton. 2000. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64: 180–201.
  • Pitcher D.G., N.A. Saunders and R.J. Owen. 1989. Rapid extraction of bacterial genomic DNA with guanidine thiocyanate. Lett Appl. Microbiol. 8: 151–156.
  • Rodriguez H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Adv. 17: 319–339.
  • Rodríguez-Blanco A., M. Sicardi and L. Frioni. 2010. Competition for nodule occupancy between introduced and native strains of Rhizobium leguminosarum biovar trifolii. Biol. Fertil. Soils 46: 419–425
  • Silva C., F.L. Kan and E. Martinez-Romero. 2007. Population genetic structure of Sinorhizobium meliloti and S. medicae isolated from nodules of Medicago spp. in Mexico. FEMS Microbiol. Ecol. 60: 477–489.
  • Simms E.L. and D.L. Taylor. 2002. Partner choice in nitrogen-fixation mutualism of legumes and rhizobia. Integ. Comp. Biol. 42: 369–380.
  • Streeter J.G. 1994. Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation. Can. J. Microbiol. 40: 513–522.
  • Tamura K., D. Peterson, N. Peterson, G. Stecher, M. Nei andS. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.
  • Triplett E.W. and M.J. Sadowsky. 1992. Genetics of competition for nodulation of legumes. Ann. Rev. Microbiol. 40: 399–428.
  • Van Dillewijn P., M.J. Soto, P.J. Villadas and N. Toro. 2001. Construction and environmental release of a Sinorhizobium meliloti strain genetically modified to be more competitive for alfalfa nodulation. Appl. Environ. Microbiol. 67: 3860–3865.
  • Vanderlinde E.M., M.F. Hynes and C.K. Yost. 2014. Homoserine catabolism by Rhizobium leguminosarum bv. viciae 3841 requires a plasmid-borne gene cluster that also affects competitiveness for nodulation. Environ. Microbiol. 16: 205–217.
  • Versalovic J., T. Koeuth and R.J. Lupski. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 9: 6823–6831.
  • Vincent J.M. 1970. A manual for the practical study of the root-nodule bacteria. IBP handbook no.15. Blackwell Scientific Publishers, Oxford, England.
  • Weisburg W.G., S.M. Barns, D.A. Pelletier and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697–703.
  • Wielbo J., M. Marek-Kozaczuk, A. Kubik-Komar and A. Skorupska. 2007. Increased metabolic potential of Rhizobium spp. is associated with bacterial competitiveness. Can. J. Microbiol. 53: 957–967.
  • Wielbo J., M. Marek-Kozaczuk, A. Mazur, A. Kubik-Komar and A. Skorupska. 2010a. Genetic and metabolic divergence within a Rhizobium leguminosarum bv. trifolii population recovered from clover nodules. Appl. Environ. Microbiol. 76: 4593–4600.
  • Wielbo J., J. Kuske, M. Marek-Kozaczuk and A. Skorupska. 2010b. The competition between Rhizobium leguminosarum bv. viciae strains progresses until late stages of symbiosis. Plant Soil 337: 125–135.
  • Wielbo J. and A. Skorupska. 2001. Construction of improved vectors and cassettes containing gusA and antibiotic resistance genes for studies of transcriptional activity and bacterial localization. J. Microbiol. Methods 45: 197–205.
  • Wilson K.J., A. Sessitsch, J.C. Corbo, K.E. Giller, A.D. Akkermans and R.A. Jefferson. 1995. β-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other gram-negative bacteria. Microbiology 141: 1691–705.
  • Young J.P., L.C. Crossman, A.W. Johnston, N.R. Thomson,Z.F. Ghazoui, K.H. Hull, M. Wexler, A.R. Curson, J.D. Todd,P.S. Poole and others. 2006. The genome of Rhizobium leguminosarum has recognizable core and accessory components, Genome Biol. 7: R34.
  • Yost C.K., K.L. Del Bel, J. Quandt and M.F. Hynes. 2004. Rhizobium leguminosarum methyl-accepting chemotaxis protein genes are down-regulated in the pea nodule. Arch. Microbiol. 182: 505–513.
  • Zhan F. and D.L. Smith. 2002. Interorganismal signaling in suboptimum environments: the legume-rhizobia symbiosis. Adv. Agronom. 76: 125–161.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-afad0f35-d767-4ce0-9309-91c7c8c4683e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.