PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 62 | 1 |

Tytuł artykułu

Inhibition of glycoxidative modification of proteins by some substances of natural origin

Treść / Zawartość

Warianty tytułu

PL
Substancje pochodzenia naturalnego o najsilniejszych właściwościach hamujących proces glikooksydacji

Języki publikacji

EN

Abstrakty

EN
Introduction: Advanced glycation end-products (AGE) and advanced oxidation protein products (AOPP) are the main products of glycoxidative modification in diabetes. Objective: The aim of this study was to identify the natural substance with the strongest antiglycoxidative properties among dietary supplements or medicines available without prescription in Poland. Methods: Bovine serum albumin (BSA), vitamin C (VC), aminoguanidine (A), quercetin (Q) and green tea (GT) were tested in vitro in comparison to controls in glycation, oxidation and glycoxidation processes. The decreased AGE and AOPP concentrations were measured as markers of these processes. Results: AGE level was reduced by 72% by VC and at least by 43% by all examined substances in the glycation process. AOPP was reduced by 99% by VC and at least by 40% by all examined substances in the oxidation process. Formation of AGE/AOPP was inhibited by 61% by Q and by 97% by A, and at least 49/88% by all examined substances, respectively. This lowering of AGE/AOPP level was statistically significant (p<0.001) for all test substances in comparison to the positive control C(+). Conclusion: All examined substances are able to inhibit glycative, oxidative and glycoxidative modification of proteins in different degrees depending on their concentration.
PL
Wstęp: Zaawansowane końcowe produkty glikacji (AGE) i zaawansowane produkty utleniania białek (AOPP) są głównymi produktami glikooksydacji u pacjentów z cukrzycą. Cel: Celem pracy było zidentyfikowanie substancji naturalnego pochodzenia o najsilniejszych właściwościach hamujących proces glikooksydacji spośród suplementów diety i leków dostępnych bez recepty na polskim rynku farmaceutycznym. Metody: Albumina wołowa (BSA), witamina C (VC), aminoguanidyna (A), kwercetyna (Q) i zielona herbata (GT) były badane in vitro podczas procesów glikacji, utleniania i glikooksydacji. Zmniejszenie stężenia AGE i AOPP w porównaniu z kontrolą dodatnią przyjęto jako marker efektywności zachodzących procesów. Wyniki: Tworzenie AGE było zredukowane w 72% przez VC i w co najmniej 43% przez pozostałe substancje w procesie glikacji. Stężenie AOPP było obniżone o 99% przez VC i w przynajmniej 40% przez pozostałe substancje badane w procesie utleniania. W przebiegu glikooksydacji tworzenie AGE/AOPP było obniżone odpowiednio w 61% przez Q w 97% przez A i przynajmniej o 49%/88% przez pozostałe substancje. Wnioski: Badane substancje wykazały zdolności hamujące glikację, utlenianie i glikooksydację białek w różnym stopniu w zależności od zastosowanego stężenia.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

62

Numer

1

Opis fizyczny

p.66-82,fig.,ref.

Twórcy

autor
  • Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556 Wroclaw, Poland
autor
  • Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 St., 50-556 Wroclaw, Poland

Bibliografia

  • 1. Kalousová M, Zima T, Tesar V, Dusilová-Sulková S, Skrha J. Advanced glycoxidation end products in chronic diseases – clinical chemistry and genetic background. Mutat Res 2005; 11(579(1-2)):37-46. doi:10.1016/j.mrfmmm.2005.03.024
  • 2. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ et al. Global burden of metabolic risk factors of chronic diseases collaborating group (blood glucose). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 27 million participants. Lancet 2011; 378(9785):31-40. doi: http://dx.doi.org/10.1016/S0140-6736(11)60679-X
  • 3. Piwowar A. Aspekty biochemiczne i kliniczne zaawansowanych produktów utleniania białek w chorobach nerek i zaburzeniach metabolicznych. Post Hig Med Dośw (online) 2014; 68:179-90. doi: http://dx.doi.org/10.5604/17322693.1088754
  • 4. Sadowska-Bartosz I, Bartosz G. Prevention of protein glycation by natural compounds. Molecules 2015; 20:3309-3334. doi: http://dx.doi.org/10.3390/molecules20023309
  • 5. Piwowar A. Perspektywy farmakoterapii chorób przebiegających z udziałem zaawansowanych produktów utleniania białek. Post Hig Med Dośw (online) 2014; 68:1264-75. doi: http://dx.doi.org/10.5604/17322693.1127949
  • 6. Grzebyk E, Piwowar A. The Tibetan herbal medicines Padma 28 and Padma Circosan inhibit the formation of advanced glycation endproducts (AGE) and advanced oxidation protein products (AOPP) in vitro. BMC Complement Altern Med 2014; 14:287. doi: http://dx.doi.org/10.1186/1472-6882-14-287
  • 7. Mosca A, Lapolla A, Gillery P. Glycemic control in the clinical management of diabetic patients. Clin Chem Lab Med 2013; 51(4):753–66. doi: http://dx.doi.org/10.1515/cclm-2012-0594
  • 8. Münch G, Wessels A, Riederer P, Bahner U, Heidland A, Niwa T et al. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitice ELISA. Eur J Clin Chem Clin Biochem 1997; 35(9):669-77. doi: http://dx.doi.org/10.1515/cclm.1997.35.9.669
  • 9. Witko-Sarsat V, Nguyen-Khoa T, Jungers P, Drüeke TB, Descamps-Latscha B. Advanced oxidation protein products as a novel molecular basis of oxidative stress in uraemia. Nephrol Dial Transplant 1999; 14(1):76-8. doi: http://dx.doi.org/10.1093/ndt/14.suppl_1.76
  • 10. Skvarilová M, Bulava A, Stejskal D, Adamovská S, Bartek J. Increased level of advanced oxidation products (AOPP) as a marker of oxidative stress in patients with acute coronary syndrome. Biomed Pap 2005; 149(1):83-7. doi: http://dx.doi.org/10.5507/bp.2005.009
  • 11. Alavi NM, Alami L, Taefi S, Gharabagh GS. Factor analysis of self-treatment in diabetes mellitus: a crosssectional study. BMC Publ Health 2011; 11:761. doi: http://dx.doi.org/10.1186/1471-2458-11-761
  • 12. Rondeau P, Bourdon E. The glycation of albumin: Structural and functional impacts. Biochimie 2013; 93:645-58. doi: http://dx.doi.org/10.1016/j.biochi.2010.12.003
  • 13. Ding F, Huang J, Lin J, Li Z, Liu F, Jiang Z et al. Study of the binding of C.I. Mordant Red 3 with bovine serum albumin using fluorescence spectroscopy. Dyes Pigm 2009; 82:65-70. doi: http://dx.doi.org/10.1016/j.dyepig.2008.11.003
  • 14. Friedlander MA, Witko-Sarsat V, Nguyen AT, Wu YC, Labrunte M, Verger C et al. The advanced glycation endproduct pentosidine and monocyte activation in uremia. Clin Nephrol 1996; 45(6):379-82.
  • 15. Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 2003; 419:31-40. doi:10.1016/j.abb.2003.08.013
  • 16. Gugliucci A, Menini T. The botanical extracts of Achyrocline satureoides and Ilex paraguariensis prevent methylglyoxal-induced inhibition of plasminogen and antithrombin III. Life Sci 2002; 72:279-92. doi:10.1016/S0024-3205(02)02242-7
  • 17. Rajasekar P, Anuradha CV. L-Carnitine inhibits protein glycation in vitro and in vivo: evidence for a role in diabetic management. Acta Diabet 2007; 44:83-90. doi: http://dx.doi.org/10.1007/s00592-007-0247-5
  • 18. Losso JN, Bawadi HA, Chintalapati M. Inhibition of the formation of advanced glycation end products by thymoquinone. Food Chem 2011; 128:55-61. doi: http://dx.doi.org/10.1016/j.foodchem.2011.02.076
  • 19. Kitho T, Usui S, Hirano K, Aizawa K, Inakuma T. Tomato paste fraction inhibiting the formation of advanced glycation end-products. Biosci Biotechnol Biochem 2004; 68:200-5. doi: http://dx.doi.org/10.1271/bbb.68.200
  • 20. Ara C, Karabulut AB, Yilmaz M, Kirimliglu V, Yilmaz S. Protective effect of aminoguanidine against oxidative stress in an experimental peritoneal adhesion model in rats. Cell Biochem Funct 2006; 24:443-8. doi: http://dx.doi.org/10.1002/cbf.1245
  • 21. Stadler K, Jenei V, Jakus J. Benefical effects of aminoguanidine on the cardiovascular system of diabetic rats. Diab Metab Res Rev. 2005; 21:189-96. doi: http://dx.doi.org/10.1002/dmrr.501
  • 22. Zhang HM, Wang CF, Shen SM, Wang GL, Liu P, Liu ZM et al. Antioxidant phenolic compounds from Puerh tea. Molecules 2012; 17(12):14037-45. doi: http://dx.doi.org/10.3390/molecules171214037
  • 23. Moukette BM, Pieme CA, Njimou JR, Biapa CP, Marco B, Ngogang JY. In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica. Biol Res. 2015; 48(1):15. doi: http://dx.doi.org/10.1186/s40659-015-0003-1
  • 24. Shah SM, Ahmad Z, Yaseen M, Shah R, Khan S, Shah SM et al. Phytochemicals, in vitro antioxidant, total phenolic contents and phytotoxic activity of Cornus macrophylla Wall bark collected from the North-West of Pakistan. Pak J Pharm Sci 2015; 28(1):23-8. doi: http://dx.doi.org/10.5829/idosi.aejaes.2015.15.9.9514
  • 25. Vinson JA, Howard TB. Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J Nutr Biochem 1996; 7:659-63. doi:10.1016/S0955-2863(96)00128-3
  • 26. Tarwadi KT, Agte VV. Effect of micronutrients on methylglyoxal-mediated in vitro glycation of albumin. Biol Trace El Res 2011; 143:717-25. doi: http://dx.doi.org/10.1007/s12011-010-8915-7
  • 27. Lavelli V, Corey M, Kerr W, Vantaggi C. Stability and anti-glycation properties of intermediate moisture apple products fortified with green tea. Food Chem 2011; 127(2):589-95. doi: http://dx.doi.org/10.1016/j.foodchem.2011.01.047
  • 28. Djouossi MG, Tamokou JD, Ngnokam D, Kuiate JR, Tapondjou LA, Harakat D et al. Antimicrobial and antioxidant flavonoids from the leaves of Oncoba spinosa Forssk. (Salicaceae). BMC Complement Altern Med 2015; 15(1):134. doi: http://dx.doi.org/10.1186/s12906-015-0660-1
  • 29. Wu CH, Lin JA, Hsieh WC, Yen GC. Low-density-lipoprotein (LDL)-bound flavonoids increase the resistance of LDL to oxidation and glycation under pathophysiological concentrations of glucose in vitro. J Agric Food Chem 2009; 57:5058-64. doi: http://dx.doi.org/10.1021/jf9001445
  • 30. Kerio LC, Wachira FN, Wanyoko JK, Rotich MK. Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars. Food Chem 2013; 136(3-4):1405-13. doi: http://dx.doi.org/10.1016/j.foodchem.2012.09.066
  • 31. Forester SC, Lamberd JD: The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol Nutr Food Res 2011; 55(6):844-54. doi: http://dx.doi.org/10.1002/mnfr.201000641
  • 32. Benzie I, Szeto YT. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem 1999; 47(2):633-36. doi: http://dx.doi.org/10.1021/jf9807768
  • 33. Lunceford N, Gugliucci A. Ilex paraguariensis extracts inhibit AGE formation more efficiently than green tea. Fitoterapia 2005; 76:419-27. doi:10.1016/j.fitote.2005.03.021
  • 34. Almajano MP, Vila I, Gines S. Neuroprotective effects of white tea against oxidative stress-induced toxicity in striatal cells. Neurotox Res 2011; 20(4):372-78. doi: http://dx.doi.org/10.1007/s12640-011-9252-0
  • 35. Neyestani TR, Shariatzade N, Kalayi A, Gharavi A, Khalaji N, Dadkhah M et al. Regular daily intake of black tea improves oxidative stress biomarkers and decreases serum C-reactive protein levels in type 2 diabetic patients. Ann Nutr Met 2010; 57(1):40-9. doi: http://dx.doi.org/10.1159/000312666
  • 36. Babu PVA, Sabitha KE, Srinivasan P, Shyamaladevi CS. Green tea attenuates diabetes induced Maillardtype fluorescence and collagen cross-linking in the heart of streptozotocin diabetic rats. Pharmacol Res 2007; 55:433-40. doi:10.1016/j.phrs.2007.01.019

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-af393a5a-ad89-483e-8ed4-3e3e0c3de97b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.