PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 3 |

Tytuł artykułu

Effect of bisphenol A-induced oxidative stress on the ultra structure and antioxidant defence system of Arabidopsis thialiana leaves

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bisphenol A (BPA) is an emerging environmental pollutant with potentially toxic effects on living organisms. The present study was undertaken to analyze the effects of BPA on the leaves of Arabidopsis thialina by determining the levels of photosynthetic pigments, reactive oxygen species (ROS), membrane lipid peroxidation, and ultrastructural malformation. The obtained results revealed that while a low dose of BPA (10μM) did not alter the test indices significantly, it did cause significant changes in all test indices at higher concentrations. Upon exposure to 40 μM BPA, chlorophyll a and chlorophyll b content showed a decrease of 33% and 30%, respectively. It significantly increased ROS contents and lipid peroxidation at 40 μM BPA exposure. Biochemical and gene expression analysis revealed that the antioxidant system was activated and mounted a defense against BPA-induced ROS. In the case of superoxide dismutase (SOD), 40 μM of BPA caused an increase of 151%. However, the malfunctioning of ascorbate peroxidase (APX) and catalase (CAT) at the highest dose of BPA (40 μM) resulted in incomplete activation of the antioxidant defensive system. BPA stress significantly altered the ultrastructure of cells as evidenced by the reduced number of starch grains, damaged chloroplast and mitochondria, and altered leaf epidermal surface, guard cells, and stomata. It is concluded that observed adverse effects in Arabidopsis leaves in response to BPA exposure could be attributed to BPA-induced oxidative stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

3

Opis fizyczny

p.967-978,fig.,ref.

Twórcy

autor
  • Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
  • Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
autor
  • Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
autor
  • Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
autor
  • Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
autor
  • Department of Botany, Kohat University of Science and Technology, Kohat, Pakistan
autor
  • Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
autor
  • 2 Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
autor
  • Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
autor
  • Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
autor
  • Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
autor
  • Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China

Bibliografia

  • 1. Islam F., Ali S., Farooq M.A., Wang J., Gill R.A., Zhu J., Zhou W. Butachlor-Induced Alterations in Ultrastructure, Antioxidant, and Stress-Responsive Gene Regulations in Rice Cultivars. CLEAN - Soil, Air, Water, 1500851, 2017.
  • 2. Atkinson N.J., Dew T.P., Orfila C., Urwin P.E. Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). J. Agric. Food Chem., 59 (17), 9673, 2011.
  • 3. Ali I., Liu B.H., Farooq M.A., Islam F., Azizullah A., Yu C.Y., Gan Y.B. Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza saliva as revealed by ultrastructure analysis. Ecotoxicol. Environ. Saf. 124, 277, 2016.
  • 4. Cooper J.E., Kendig E.L., Belcher S.M. Assessment of bisphenol A released from reusable plastic, aluminium and stainless steel water bottles. Chemosphere, 85 (6), 943, 2011.
  • 5. Zhang J.Z., Li X.Y., Zhou L., Wang L.H., Zhou Q., Huang X.H. Analysis of effects of a new environmental pollutant, bisphenol A, on antioxidant systems in soybean roots at different growth stages. Sci. Rep., 6, 2016.
  • 6. Wang Q., Wang L., Han R., Yang L., Zhou Q., Huang X. Effects of bisphenol A on antioxidant system in soybean seedling roots. Environ. Toxicol. Chem., 34 (5), 1127, 2015.
  • 7. Yamamoto T., Yasuhara A., Shiraishi H., Nakasugi O. Bisphenol A in hazardous waste landfill leachates. Chemosphere, 42 (4), 415, 2001.
  • 8. Hunt P.A., Susiarjo M., Rubio C., Hassold T.J. The Bisphenol A Experience: A Primer for the Analysis of Environmental Effects on Mammalian Reproduction. Biol. Reprod., 81 (5), 807, 2009.
  • 9. Kundakovic M., Champagne F.A. Epigenetic perspective on the developmental effects of bisphenol A. Brain. Behav. Immun., 25 (6), 1084, 2011V
  • 10. Speroni L., Voutilainen M., Mikkola M.L., Klager S.A., Schaeberle C.M., Sonnenschein C., Soto A.M. New insights into fetal mammary gland morphogenesis: differential effects of natural and environmental estrogens. Sci Rep., 7, 40806, 2017.
  • 11. Rhee J.-S., Kim B.-M., Lee C.J., Yoon Y.-D., Lee Y.- M., Lee J.-S. Bisphenol A modulates expression of sex differentiation genes in the self-fertilizing fish, Kryptolebias marmoratus. Aquat. Toxicol., 104 (3), 218, 2011.
  • 12. Valipour M. Global experience on irrigation management under different scenarios. J. Water L. Dev. 32 (1), 95, 2017.
  • 13. Valipour M. Drought Analysis in Different Basins and Climates. Taiwan Water Conserv., 65 (1), 55, 2017.
  • 14. Valipour M. Future of agricultural water management in Africa. Arch. Agron. Soil Sci., 61 (7), 907, 2015.
  • 15. Valipour M. How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? Agriculture, 6 (4), 53, 2016.
  • 16. Yannopoulos S.I., Lyberatos G., Theodossiou N., Li W., Valipour M., Tamburrino ,A., Angelakis A.N. Evolution of water lifting devices (pumps) over the centuries worldwide. Water, 7 (9), 5031, 2015.
  • 17. Flint S., Markle T., Thompson S., Wallace E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J. Environ. Manage., 104, 19, 2012.
  • 18. Nakajima N., Ohshima Y., Serizawa S., Kouda T., Edmonds J.S., Shiraishi F., Morita M. Processing of bisphenol A by plant tissues: Glucosylation by cultured BY-2 cells and Glucosylation/translocation by plants of Nicotiana tabacum. Plant Cell Physiol. 43 (9), 1036, 2002.
  • 19. Pan W.J., Xiong C., Wu Q.P., Liu J.X., Liao H.M., Chen W., Zheng L. Effect of BPA on the germination, root development, seedling growth and leaf differentiation under different light conditions in Arabidopsis thaliana. Chemosphere, 93 (10), 2585, 2013.
  • 20. Zhang J.Z., Wang L.H., Li M., Jiao L.Y., Zhou Q., Huang X.H. Effects of bisphenol A on chlorophyll fluorescence in five plants. Environ. Sci. Pollut. Res., 22 (22), 17724, 2015.
  • 21. Ferrara G., Loffredo E., Senesi N. Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol A in various crops grown hydroponically. Planta, 223 (5), 910, 2006.
  • 22. Qiu Z., Wang L., Zhou Q. Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere, 90 (3), 1274, 2013.
  • 23. Wen Y., Chen H., Shen C., Zhao M., Liu W. Enantioselectivity tuning of chiral herbicide dichlorprop by copper: roles of reactive oxygen species. Environ. Sci. Technol. 45 (11), 4778, 2011.
  • 24. Kumar A., Prasad M.N.V, Mohan V., Achary M., Panda B.B. Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. (n.d.)
  • 25. Hafsi C., Romero -Puertas M.C., Gupta D.K., del Rio L.A., Sandalio L.M., Abdelly C. Moderate salinity enhances the antioxidative response in the halophyte Hordeum maritimum L. under potassium deficiency. Environ. Exp. Bot., 69 (2), 129, 2010.
  • 26. Conn S.J., Hocking B., Dayod M., Xu B., Athman A., Henderson S., Gilliham M. Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants. Plant Methods., 9, 2013.
  • 27. Ahammed G.J., Choudhary S.P., Chen S.C., Xia X.J., Shi K., Zhou Y.H., Yu J.Q. Role of brassinosteroids in alleviation of phenanthrenecadmium co-contaminationinduced photosynthetic inhibition and oxidative stress in tomato. J. Exp. Bot., 64 (1), 199, 2013.
  • 28. Gratão P.L., Monteiro C.C., Carvalho R.F., Tezotto T., Piotto F.A., Peres L.E.P., Azevedo R.A. Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. Plant Physiol. Biochem. 56, 79, 2012.
  • 29. Thordal -Christensen H., Zhang Z., Wei Y., Collinge D.B. Subcellular localization of H₂O₂ in plants. H₂O₂ accumulation in papillae and hypersensitive response during the barley - powdery mildew interaction. Plant J., 11 (6), 1187, 1997.
  • 30. Fryer M.J., Oxborough K., Mullineaux P.M., Baker N.R. Imaging of photo-oxidative stress responses in leaves. J. Exp. Bot. 53 (372), 1249, 2002.
  • 31. Daud M.K., Mei L., Azizullah A., Dawood M., Ali I., Mahmood Q., Zhu S.J. Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione. Environ. Sci. Pollut. Res., 23 (15), 15551, 2016.
  • 32. Zhou W., Leul M. Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul., 27 (2), 99, 1999.
  • 33. Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Physiol. Biochem., 22 (5), 867, 1981.
  • 34. Aebi H. [13] Catalase in vitro. Methods Enzymol., 105, 121, 1984.
  • 35. Liu Y., Liu D., Hu R., Hua C., Ali I., Zhang A., Gan Y. AtGIS, a C2H2 zinc-finger transcription factor from Arabidopsis regulates glandular trichome development through GA signaling in tobacco. Biochem. Biophys. Res. Commun., 483 (1), 209, 2016.
  • 36. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 25 (4), 402, 2001.
  • 37. Tanaka A., Ito H., Tanaka R., Tanaka N.K., Yoshida K., Okada K. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc. Natl. Acad. Sci., 95 (21), 12719, 1998.
  • 38. Lange B.M., Ghassemian M. Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol. Biol., 51 (6), 925, 2003.
  • 39. Stephenson P.G., Terry M.J. Light signalling pathways regulating the Mg-chelatase branchpoint of chlorophyll synthesis during de-etiolation in Arabidopsis thaliana. Photochem. Photobiol. Sci., 7 (10), 1243, 2008.
  • 40. Wang X., Yang X., Chen S., Li Q., Wang W., Hou C., Wang S. Zinc Oxide Nanoparticles Affect Biomass Accumulation and Photosynthesis in Arabidopsis. Frontiers in plant science, 6, 2015.
  • 41. Chen G., Ren L., Zhang J., Reed B.M., Zhang D., Shen X. Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Cryobiology, 70 (1), 38, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ad447488-5cc4-42c3-bca2-b425453934b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.