PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 2 |

Tytuł artykułu

Production of zinc-enriched biomass of Saccharomyces cerevisiae

Treść / Zawartość

Warianty tytułu

PL
Produkcja wzbogaconej cynkiem biomasy Saccharomyces cerevisiae

Języki publikacji

EN

Abstrakty

EN
Zinc accumulation and the growth of Saccharomyces cerevisiae were investigated in a culture with zinc sulfate-supplemented medium. The cultivations were performed on Sabouraud dextrose broth medium in aerobic conditions, without the addition of zinc (control culture) and with the addition of zinc sulfate (5, 10, 15, 30 and 60 mg ZnSO l -1 medium) at 28 ° C for 72 hours. The results showed similar trends of yeast growth rates at 24, 48, and 72-hour interval, with concentrations above 10 mg l -1 ZnSO in the nutritional medium significantly decreasing the yeast growth rate and the biomass yield ( P <0.05). Substantial differences between the initial ZnSO concentrations in the growth medium were demonstrated in the overall adsorption of Zn ions (Zn 2+ ) in yeast cells by a colorimetric assay ( P <0.05). Similarly, the content of total accumulated zinc, as well as the fractions of Zn present in cells depended mainly on the zinc concentration in the medium, as the total Zn accumulation and organically bound Zn fractions were increased by elevating the ZnSO supplementation in the culture medium up to 30 mg l -1 , but gradually reduced by any further addition of ZnSO determined by an ICP-MASS assay ( P <0.05). In the presence of 30 mg l -1 ZnSO , the Zn content in the biomass increased by 24-fold, to 4132.34 m g g -1 in comparison to 171.9 m g g -1 achieved in the basal medium. Thus, the ability of S. cerevisiae to accumulate zinc can be used for production of a zinc-rich ingredient for functional food products.
PL

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.313-326,fig.,ref.

Twórcy

autor
  • Department of Poultry Science, Tarbiat Modares University, Tehran, Iran
  • Department of Poultry Science, Tarbiat Modares University, Naser alley, Chamran Highway, 14117-13116 Tehran, Iran
  • Department of Poultry Science, Tarbiat Modares University, Tehran, Iran

Bibliografia

  • Arslan P., Beltrame M., Tomasi A. 1987. Intracellular chromium reduction. Biochim. Biophys. Acta., 931: 10-15.
  • Berg JM., Tymoczko JL., Stryer L. 2002. Biochemistry. New York, WH Free-man and Company, pp 270, 465, 687.
  • Blackwell KJ., Singleton I., Tobin JM. 1995. Metal cation uptake by yeast: a review. Appl. Microbiol. Biotechnol., 43: 579-584.
  • Brady D., Duncan JR. 1994. Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 41: 149-154.
  • Bromberg SK., Bower PA., Duncombe GR., Fehring J., Gerber I., Lau VK., Tata M. 1997. Requirements for zinc, manganese, calcium and magnesium in wort. J. Am. Soc. Brew. Chem., 55: 123-128.
  • Castro CE., Sevall JS. 1993. Zinc deficiency, chromatin structure, and gene expression. In: Nutrient modulation of the immune response. Dekker M. (ed). New York, S. Cunningham--Rundles, pp 141-50.
  • Cohen A., Nelson H., Nelson N. 2000. The family of SMF metal ion transporters in yeast cells. J. Biol. Chem., 275: 33388–33394.
  • Cornelis R., Crews H., Donard O., Ebdon L., Pitt s L., Quevauville J. 2001. Summary paper of the EC Network on trace element speciation for analysts, industry and regulators-what we have and what we need. J. Environ. Monit., 3: 97-101.
  • Dalgaard P., Koutsoumanis K. 2001. Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. J. Microbiol. Methods, 43: 183-196.
  • Daniel JK., Paul KH., Scott DE. 1990. The fungal vacuoles composition, function and biogenesis. Microbiol. Rev., 54: 266-292.
  • Dardenne M., Bach JM. 1993. Rationale for the mechanism of zinc interaction in the immune system. In: Nutrient modulation of the immune response. Dekker M. (ed). New York, S. Cunningham-Rundles, pp 501-509.
  • De Nicola R., Hall N., Bollag T., Thermogiannis G., Walker GM. 2009a. Zinc accumulation and utilization by wine yeasts. Int. J. Wine. Res., 1: 85-94.
  • De Nicola D., Hall N., Melville SG., Walker GM. 2009b. Influence of zinc on distiller’s yeast: cellular accumulation of zinc and impact on spirit congeners. J. Inst. Brew., 15(3): 265-271.
  • Dobrzanski Z., Jamroz D. 2003. Bioavailability of selenium and zinc supplied to the feed for laying hens in organic and inorganic form. EJPAU, 6: 1-8.
  • Duszkiewicz-Reinhard W., Gniewosz M., Błażejak S., Bańkowski A. 2005. Studies into Saccharomyces cerevisiae baker’s yeast capacity for binding magnesium under batch conditions. Pol. J. Food Nutr. Sci., 55: 249-255.
  • Ecker DJ., Butt TR., Sternberg EJ., Neeper MP., Debouck C., Gorman JA., Crook ST. 1986. Yeast metallothionein functional in metal ion detoxification. J. Biol. Chem., 261: 16895--16900.
  • Eide D. 1997. Molecular biology of iron and zinc uptake in eukaryotes. Curr. Opin. Cell Biol., 9: 573-577.
  • Failla ML., Weinberg ED. 1977. Cyclic accumulation of zinc by candida utilis during growth in batch culture. J. Gen. Microbiol., 99: 85-97.
  • Gadd GM., Mowll JL. 1983. The relationship between cadmium uptake, potassium release and viability in Saccharomyces cerevisiae. FEMS Microbiol. Let., 16: 45-48.
  • Gaudreau H., Conway J., Champagne CP. 2001. Production of zinc-enriched extract. J. Food. Sci. Technol. Mys., 38(4): 348-351.
  • Godlewska-Zlkiewicz B. 2006. Microorganisms in inorganic chemical analysis. Anal. Bioanal. Chem., 38(4): 114-123.
  • Greco MA., Hrab DJ., Magnev WDJ., Kosman J. 1990. Cu, Zn superoxide dismutase and copper deprivation and toxicity in Saccharomyces cerevisiae. J. Bacteriol., 172: 317-321.
  • Hammond J. 2004. Yeast growth and nutrition. In: Brewing yeast fermentation performance. Smart K. (ed). Oxford, Blackwell Sciences Plc, pp 77-85.
  • Hughes MN., Poole RK. 1991. Metal speciation and microbial growth – the hard (and soft) facts. J. Gen. Microbiol., 137: 725-734.
  • Jones RP., Gadd GM. 1990. Ionic nutrition of yeast: physiological mechanisms involved and implications for biotechnology. Enzyme Microb. Technol., 12: 1-17.
  • Jones RP., Greenfield P. 1984. A review of yeast ionic nutrition. Process. Biochem., 19: 48-58.
  • Kitamoto K., Yoshizawa K., Ohsumi Y., Anraku Y. 1988. Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J. Bacteriol., 170: 2683-2686.
  • Konopka A., Zakharova T., Bischoff M., Oliver L., Nakatsu C., Turco RF. 1999. Microbial biomass and activity in lead contaminated soil. Appl. Environ. Microbiol., 65: 2256-2259.
  • Liu FX., Supek F., Nelson N., Culott a VC. 1997. Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J. Biol. Chem., 272(18): 11763-11769.
  • Macdiarmid C., Milanick MA., Eide DJ. 2002. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. J. Biol. Chem., 277: 39187-39194.
  • Gniewosz M., Blażejak S., Roman J., Duszkiewicz-Reinhard W. 2006. A study on Saccharomyces cerevisiae and Candida utilis cell wall capacity for binding magnesium. Eur. Food Res. Technol., 224: 49-54. DOI: 10.1007/s00217-006-287-z
  • Mowll ML., Gadd GM. 1983. Zinc uptake and toxicity in the yeasts Sporobolomyces roseus and Saccharomyces cerevisiae. J. Gen. Microbiol., 129: 3421-3425.
  • Nelson N. 1999. Metal ion transporters and homeostasis. EMBO J., 18(16): 4361-4371.
  • Norris PR., Kelly DP. 1977. Accumulation of cadmium and cobalt by Saccharomyces cerevisiae. J. Gen. Microbiol., 99: 317-324.
  • Nowak D., Kasiak T., Lewicki PP., Duszkiewicz-Reinhard W. 2005. Pilot-plant cultivation of brewery’s yeast Saccharomyces cerevisiae enriched with magnesium. Pol. J. Food Nutr. Sci., 14(2): 177-182.
  • Passow H., Rothsteina A. 1960. The binding of mercury by the yeast cell in relation to changes in permeability. J. Gen. Physiol., 43: 621-633.
  • Ponta H., Broda E. 1970. Mechanism of zinc uptake by baker’s yeast. Planta, 95: 18-26.
  • Rebar EJ., Miller JC. 2004. Design and applications of engineered zinc finger proteins. Bio. Tech. Int., 16(2): 20-24.
  • Roepcke CBS., Vandenberghe LPS., Soccol CR. 2011. Optimized production of Pichia guilliermondii biomass with zinc accumulation by fermentation. Anim. Feed. Sci. Technol., 163: 33-42.
  • SAS Institute. 1996. SAS/STAT User’s Guide: Statistics. Release 6.11. SAS Institute Inc. Cary, NC.
  • Šillerová S., Lavová B., Urminská D., Poláková A., Vollmannová A., Harangozo Ľ. 2012. Preparation of zinc enriched yeast (saccharomyces cerevisiae) by cultivation with different zinc salts. JMBFS, 1: 689-695.
  • Stehlik-Thomas V., Zetic VG., Stanzer D., Grba S., Vahcic N. 2004. Zinc, cooper and manganese enrichment in yeast Saccharomyces cerevisiae. Food Technol. Biotechnol., 42(2): 115-120.
  • Templeton DM., Ariese F., Cornelis R., Danielsson LG., Muntau H., Van Leeuwen HP., Łobiński R. 2000. Guidelines for terms related to chemical speciation and fractionation of trace elements: definitions, structural aspects, and methodological approaches. Pure Appl. Chem., 72 (8): 1453-1470.
  • Valee B., Falchuk KH. 1993. The biochemical basis of zinc physiology. Physiol. Rev., 78: 79-118.
  • Vasanthy M. 2004. An investigation on removal of chromium (VI) using bacterial strains Asian. J. Microbiol. Biotech. Env. Sci., 6(4): 583-586.
  • Vijver MG., Gestel CAMV., Lanno RP., Van Straalen NM., Peijnenburg WJGM. 2004. Internal metal sequestration and its ecotoxicological relevance: a review. Environ. Sci. Technol., 38: 4705-4712.
  • Volesky B., May-Phillips HA. 1995. Biosorption of heavy metals by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 42: 797-806.
  • Walker MG. 2004. Metals in yeast fermentation processes. Adv. Appl. Microbiol., 54: 197-229.
  • Welch JW., Fogel S., Cathala G., Karin M. 1983. Industrial yeasts display tandem gene iteration at the CUPI region. Mol. Cell Biol., 3: 1353-1361.
  • Welch RM. 1993. Zinc concentrations and forms in plants for humans and animals. In: Zinc and soil and plants. Robson A. (ed). Dordrecht, the Netherlands, Kluwer Academic Publishers, pp 183-195.
  • Yang X., Cheng X., Jin C. 2005. Determination Cu, Pb, Zn, Fe and Mn in yeast by atomic absorption spectrometry. Spectronic. Instrum. Anal., 4: 1-4.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-aa51ebbb-8104-4006-b184-d958de650bb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.