PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 20 | 2 |

Tytuł artykułu

Effect of deoxynivalenol on the levels of toll-like receptors 2 and 9 and their mRNA expression in enterocytes in the porcine large intestine: a preliminary study

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Deoxynivalenol (DON), one of the most prevalent mycotoxins in the world, and is capable of inducing immune disorders in humans and animals. The aim of this study was to determine the effect of feed contaminated with DON on the number of TLR2- and TLR9-positive cells and their mRNA expression in the porcine large intestine. The experiment was conducted on two equal groups of pigs (n=4). The experimental group (E) was administered feed contaminated with DON (1008 μg/kg of feed) for 6 weeks, and the control group (C) was administered non-contaminated feed over the same period of time. A decrease in the expression of TLR2 mRNA was noted in the cecum. The percentage of TLR9-positive enterocytes increased in the ascending colon and decreased in the cecum. The results of this study indicate that DON can modify the local immune response by changing the expression of TLRs.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.213-220,fig.,ref.

Twórcy

autor
  • Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
autor
  • Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
autor
  • Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
autor
  • Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
autor
  • Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland

Bibliografia

  • Abysique A, Tardivel C, Troadec JD, Felix B (2015) The food contaminant mycotoxin deoxynivalenol inhibits the swallowing reflex in anaesthetized rats. PLoS One 10: e0133355.
  • Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4: 499-511.
  • Belmonte L, Beutheu Youmba S, Bertiaux-Vandalle N, Antonietti M, Lecleire S, Zalar A, Gourcerol G, Leroi AM, Déhelotte P, Coéfier M, Ducrotté P (2012) Role of toll like receptors in irritable bowel syndrome: differential mucosal immune activation according to the disease subtype. PLoS One 7: e42777.
  • Binder EM (2007) Managing the risk of mycotoxins in modern feed production. Anim Feed Sci Technol 133: 149-166.
  • Bouhet S, Oswald IP (2005) The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response. Vet Immunol Immunopathol 108: 199-209.
  • Brint EK, MacSharry J, Fanning A, Shanahan F, Quigley EM (2011) Differential expression of toll-like receptors in patients with irritable bowel syndrome. Am J Gastroenterol 106: 329-336.
  • Bryden WL (2007) Mycotoxins in the food chain: human health implications. Asia Pac J Clin Nutr 16 (Suppl 1): 95-101.
  • Burkey TE, Skjolaas KA, Dritz SS, Minton JE (2009) Expression of porcine Toll-like receptor 2, 4 and 9 gene transcripts in the presence of lipopolysaccharide and Salmonella enterica serovars Typhimurium and Choleraesuis. Vet Immunol Immunopathol 130: 96-101.
  • Camilleri M, Gorman H (2007) Intestinal permeability and irritable bowel syndrome. Neurogastroenterol Motil 19: 545-552.
  • Cario E, Gerken G, Podolsky DK (2007) Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132: 1359-1374.
  • Cario E (2010) Toll-like receptors in inflammatory bowel diseases: a decade later. Inflamm Bowel Dis 16: 1583-1597.
  • Chung YJ, Zhou HR, Pestka JJ (2003) Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-alpha expression by deoxynivalenol (vomitoxin). Toxicol Appl Pharmacol 193: 188-201.
  • Czerwiecki L, Czyżyk K, Kwiecińska A, Wilczyńska G (2004) Immunoaffinity columns and determination of ochratoxin A in cereals by HPLC Part I.: evaluation of extraction using methanol/water. Roczn Panstw Zakl Hig 55: 133-138.
  • EC (2006) Commision recomendation on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Official Journal of the European Union L229/7-L229/9 (http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006H0576).
  • Feinberg B, McLaughlin CS (1989) Biochemical mechanism of action of tricothecene mycotoxins. In: Beasley VR (ed) Trichothecene Mycotoxicosis: Pathological Effects. CRC Press Inc., Boca Raton, FL, pp 27-35.
  • Fink-Gremmels J (1999) Mycotoxins: their implications for human and animal health. Vet Q 21: 115-120.
  • Hausmann M, Kiessling S, Mestermann S, Webb G, Spöttl T, Andus T, Schölmerich J, Herfarth H, Ray K, FalkW, Rogler G (2002) Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology 122: 1987-2000.
  • He K, Pestka JJ (2010) Deoxynivalenol-induced modulation of microRNA expression in RAW 264.7 macrophages-A potential novel mechanism for translational inhibition. Toxicologist 114 (Toxicol Sci Suppl): 310.
  • Iordanov MS, Pribnow D, Magun JL, Dinh TH, Pearson JA, Chen SL, Magun BE (1997) Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol Cell Biol 17: 3373-3381.
  • Kassinen A, Krogius-Kurikka L, Mαkivuokko H, Rinttilα T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133: 24-33.
  • Kolf-Clauw M, Castellote J, Joly B, Bourges-Abella N, Raymond-Letron I, Pinton P, Oswald IP (2009) Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis. Toxicol In Vitro 23: 1580-1584.
  • Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG,KnetterCF, Lien E, NilsenNJ,Espevik T,Golenbock DT (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5: 190-198.
  • Li M, Pestka JJ (2008) Comparative induction of 28S ribosomal RNA cleavage by ricin and the trichothecenes deoxynivalenol and T-2 toxin in the macrophage. Toxicol Sci 105: 67-78.
  • Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20: 50-57.
  • Middlebrook JL, Leatherman DL (1989) Binding of T-2 toxin to eukaryotic cell ribosomes. Biochem Pharmacol 38: 3103-3110.
  • Obermeier F, Dunger N, Deml L, Herfarth H, Scholmerich J, Falk W (2002) CpG motifs of bacterial DNA exacerbate colitis of dextran sulfate sodium-treated mice. Eur J Immunol 32: 2084-2092.
  • Patterson JK, Lei XG, Miller DD (2008) The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp Biol Med (Maywood) 233: 651-664.
  • Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev 8: 39-69.
  • Pestka JJ, Zhou HR (2006) Toll-like receptor priming sensitizes macrophages to proinflammatory cytokine gene induction by deoxynivalenol and other toxicants. Toxicol Sci 92: 445-455.
  • Pestka JJ (2010) Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 84: 663-679.
  • Pinton P, Oswald IP (2014) Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins (Basel) 6: 1615-1643.
  • Piotrowska M, Sliżewska K, Nowak A, Zielonka L, Zakowska Z, GajęckaM, Gajęcki M (2014) The effect of experimental fusarium mycotoxicosis on microbiota diversity in porcine ascending colon contents. Toxins (Basel) 6: 2064-2081.
  • Rachmilewitz D, Karmeli F, Takabayashi K, Hayashi T, Leider-Trejo L, Lee J, Leoni LM, Raz E (2002) Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology 122: 1428-1441.
  • Rodrigues I, Naehrer K (2012) A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins (Basel) 4: 663-675 .
  • Rose WA 2nd, Sakamoto K, Leifer CA (2012) TLR9 is important for protection against intestinal damage and for intestinal repair. Sci Rep 2: 574.
  • Sαnchez-Muñoz F, Fonseca-Camarillo G, Villeda-Ramtrez MA, Miranda-Pérez E, Mendivil EJ, Barreto-Zúñiga R, Uribe M, Bojalil R, Domínguez-López A, Yamamoto-Furusho JK (2011) Transcript levels of Toll-Like Receptors 5, 8 and 9 correlate with inflammatory activity in Ulcerative Colitis. BMC Gastroenterol 11: 138.
  • Sergent T, Parys M, Garsou S, Pussemier L, Schneider YJ, Larondelle Y (2006) Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations. Toxicol Lett 164: 167-176.
  • Shifrin VI, Anderson P (1999) Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem 274: 13985-13992.
  • Shimosato T, Tohno M, Kitazawa H, Katoh S, Watanabe K, Kawai Y, Aso H, Yamaguchi T, Saito T (2005) Toll-like receptor 9 is expressed on follicle-associated epithelia containing M cells in swine Peyer’s patches. Immunol Lett 98: 83-89.
  • Sugiyama K, Muroi M, Kinoshita M, Hamada O, Minai Y, Sugita-Konishi Y, Kamata Y, Tanamoto K (2016) NF-κB activation via MyD88-dependent Toll-like receptor signaling is inhibited by trichothecene mycotoxin deoxynivalenol. J Toxicol Sci 41: 273-279.
  • Taranu I, Marin DE, Pistol GC, Motiu M, Pelinescu D (2015) Induction of pro-inflammatory gene expression by Escherichia coli and mycotoxin zearalenone contamination and protection by a Lactobacillus mixture in porcine IPEC-1 cells. Toxicon 97: 53-63.
  • Thoma-Uszynski S, Kiertscher SM, Ochoa MT, Bouis DA, Norgard MV, Miyake K, Godowski PJ, Roth MD, Modlin RL (2000) Activation of Toll-like receptor 2 on human dendritic cells triggers induction of IL-12, but not IL-10. J Immunol 165: 3804-3810.
  • Tohno M, Shimosato T, Kitazawa H, Katoh S, Iliev ID, Kimura T, Kawai Y, Watanabe K, Aso H, Yamaguchi T, Saito T (2005) Toll-like receptor 2 is expressed on the intestinal M cells in swine. Biochem Biophys Res Commun 330: 547-554.
  • Uddin MJ, Kaewmala K, Tesfaye D, Tholen E, Looft C, Hoelker M, Schellander K, Cinar MU (2013) Expression patterns of porcine Toll-like receptors family set of genes (TLR1-10) in gut-associated lymphoid tissues alter with age. Res Vet Sci 95: 92-102.
  • Uenishi H, Shinkai H (2009) Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance. Dev Comp Immunol 33: 353-361.
  • Wetzler LM (2003) The role of Toll-like receptor 2 in microbial disease and immunity. Vaccine 21 (Suppl 2): S55-S60.
  • Wiśniewska-Dmytrow H, Kozak A, Żmudzki J (1999) Determination of fumonisins B1 and B2 in corn and fodder by liquid chromatography. Med Weter 55: 114-117.
  • Zhou HR, Lau AS, Pestka JJ (2003) Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol Sci 74: 335-344.
  • Zwierzchowski W, Gajęcki M, Obremski K, Zielonka Ł, Baranowski M (2004) The occurrence of zearalenone and its derivatives in standard and therapeutic feeds for companion animals. Pol J Vet Sci 7: 289-293.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-aa45d0c3-55be-406f-90cb-d4e49570294d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.