PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 3 |

Tytuł artykułu

Short-term response of wild grapevines (Vitis vinifera L. ssp. sylvestris) to NaCl salinity exposure: changes of some physiological and molecular characteristics

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The physiological and molecular response to salt stress was studied in two wild grapevine (Vitis vinifera L. ssp. sylvestris or Vitis sylvestris) accessions ‘‘Khédhayria’’ and ‘‘Houamdia’’, previously identified as salt-tolerant and salt-sensitive pair wise. Plants from both accessions were subjected to a progressive salt stress by the use of a nutritional solution containing up to 150 mM NaCl for 2 weeks. Salt stress adversely affected growth and water potential since the first day of exposure to 150 mM NaCl. However, chlorophyll fluorescence parameters were unchanged until 14 days of salt exposure. At that time point the predawn water potential (ΨPD), the non-photochemical quenching of fluorescence (NPQ) and the coefficient of photochemical quenching (qp) were significantly less altered in the tolerant accession. At the molecular level semi-quantitative RT-PCR assays revealed a differential expression of (Vs α-gal/SIP and Vs DHN) genes within these contrasting accessions after exposure to 24 h and 14 days of salt. Comparably, the Vs RD22 gene had increased slightly after only 14 days of treatment in both accessions. These results were the first pieces of information reported on the early and late regulation of salt response genes in wild grapevines. Furthermore, genotype-dependent parameters such as NPQ, qp, mRNA levels of Vs α-gal/SIP and Vs DHN could be used to screen salt-tolerant wild grapevine genotypes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

3

Opis fizyczny

p.957-968,fig.,ref.

Twórcy

autor
  • Institut National de Recherches en Genie Rural, Eaux et Forets, Laboratorie de Gestion des Risques Environnementaux en Agriculture Irriguee, BP.10, 2080 Ariana, Tunisia
autor
  • Centre de Biotechnologie de Borj Cedria, Laboratorie de Physiologie Moleculaire des Plantes, BP.901, 2050 Hammam-lif, Tunisia
autor
  • Centre de Biotechnologie de Borj Cedria, Laboratorie de Physiologie Moleculaire des Plantes, BP.901, 2050 Hammam-lif, Tunisia
autor
  • Institut National de Recherches en Genie Rural, Eaux et Forets, Laboratorie de Gestion des Risques Environnementaux en Agriculture Irriguee, BP.10, 2080 Ariana, Tunisia
autor
  • Centre de Biotechnologie de Borj Cedria, Laboratorie de Physiologie Moleculaire des Plantes, BP.901, 2050 Hammam-lif, Tunisia
autor
  • Institut National de Recherches en Genie Rural, Eaux et Forets, Laboratorie de Gestion des Risques Environnementaux en Agriculture Irriguee, BP.10, 2080 Ariana, Tunisia
autor
  • Centre de Biotechnologie de Borj Cedria, Laboratorie de Physiologie Moleculaire des Plantes, BP.901, 2050 Hammam-lif, Tunisia
autor
  • Centre de Biotechnologie de Borj Cedria, Laboratorie de Physiologie Moleculaire des Plantes, BP.901, 2050 Hammam-lif, Tunisia

Bibliografia

  • Abdeshahian M, Nabipour M, Meskarbashee M (2010) Chlorophyll fluorescence as criterion for the diagnosis salt stress in wheat (Triticum aestivum) plants. Int J Chem Biol Eng 3(4):184–186
  • Abe H, Yamaguch-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868
  • Agaoglu YS, Ergul A, Aras S (2004) Molecular characterization of salt stress in grapevine cultivars (Vitis vinifera L.) and rootstocks. Vitis 43(3):107–110
  • Alexander D, Groot Obbink J (1971) Effect of chloride in solution culture on growth and chloride uptake of Sultana and Salt Creek grape vines. Aust J Exp Agric Animal Hus 11:357–361
  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
  • Antcliff AJ, Newman HP, Barrettt HC (1983) Variation in chloride accumulation in some American species of grapevine. Vitis 22: 357–362
  • Arnold C, Gillet F, Gobat M (1998) Situation de la vigne sauvage lrtis vinifera ssp. silvestris en Europe. Vitis 37(4):159–170
  • Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev Biol Plant 44:373–383
  • Ashraf M (1999) Interactive effect of salt (NaCl) and nitrogen form on growth, water relations and photosynthetic capacity of sunflower (Helianthus annum L.). Ann Appl Biol 135(2):509–513
  • Askri H, Rejeb S, Nahdi H, Rejeb MN, Mliki A, Ghorbel A (2010) Indicateurs de tolùrance au stress salin chez la vigne sauvage (Vitis vinifera L. ssp. sylvestris). Annales de l’INRGREF Nnuméro special:11–20
  • Atlassi V, Nabipour, Mesarbashee M (2009) Effect of salt stress on chlorophyll content, fluorescence, Na+ and K+ ions content in rape plants (Brassica napus L.). Asian J Agric Res 3(2):28–37
  • Baker E, Rosenqvist NR (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621
  • Björkman O, Demmig-Adams B (1994) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze, Caldwell MM (eds) Ecophysiology of Photosynthesis. Springer, Berlin, pp 17–47
  • Cavagnaro JB, Ponce MT, Guzman J, Cirrincione MA (2006) Argentinean cultivars of Vitis vinifera grow better than European ones when cultured in vitro under salinity. Biocell 30(1):1–7
  • Cramer GR, Ergül A, Grimplet J, Tillett RL, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2006) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7(2):111–134
  • Dalal M, Deepti T, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139(2):137–145
  • Daldoul S, Chenenanoui S, Mliki A, Höfer M (2009) Improvement of an RNA purification method for grapevine (Vitis vinifera L.) suitable for cDNA library construction. Acta Physiol Plant 31:871–875
  • Daldoul S, Guillaumie S, Reustle GM, Krczal G, Ghorbel A, Delrot S, Mliki A, Höfer M (2010) Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars. Plant Sci 179:489–498
  • Direction générale de l’aménagement et de la conservation des terres agricoles (DG/ACTA) (2005) Examen et évaluation de la situation actuelle de la salinisation des sols et préparation d’un plan d’action de lutte contre ce fléau Dans les périmètres irrigués en Tunisie. Programme PISEAU, phase 1. Ministère de l’Agriculture
  • Downton WJS, Loveys BR (1981) Abscissic acid content and osmotic relations of salt-stressed grape vine leaves. Aust J Pysiol 8:443–452
  • Downton WJS, Loveys BR, Grant WJR (1990) Salinity effects on the stomatal behavior of grapevine. New Phytol 16:499–503
  • Fisarakis I, Chartzoulakis J, Stavrakas D (2001) Response of Sultana vines (Vitis vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agri Water Manage 51:13–27
  • Garcia M, Charbaji T (1993) Effect of sodium chloride salinity on cation equilibria in grapevine. J Plant Nutr 16:2225–2237
  • Genty B, Briantais JM, Baker NB (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 99:87–92
  • Grimplet J, Wheatley MD, Jouira HB, Deluc LG, Cramer GR, Cushman JC (2009) Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics 9(9):2503–2508
  • Hamrouni L (2009) Evaluation de la tolérance au sel chez la vigne en Tunisie. Thèse en sciences biologiques, 230 p
  • Hanana M, Deluc L, Fouquet R, Daldoul S, Léon C, Barrieu F, Ghorbel A, Mliki A, Hamdi S (2008) Identification et caractérisation d’un gène de réponse a` la déshydratation rd22 chez la vigne (Vitis vinifera L.). C R. Biologies 331:569–578
  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298
  • Hara M, Tokunaga K, Kuboi T (2008) Isolation of a droughtresponsive alkaline a-galactosidase gene from New Zealand spinach. Plant Biotechnol 25:497–501
  • Hatami E, Ashari ME, Javadi T (2010) Effect of salinity on some gas exchange characteristics of grape (Vitis vinifera) cultivars. Int J Agric Biol 12(2):308–310
  • Heywood V, Zohary D (1991) A catalogue of the wild relatives of cultivated plants native to Europe. Flora Mediterranea 5:375–415
  • Hunt R (1990) Basic growth analysis. Unwin Hyman, London, p 110
  • Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243–248
  • James RA, Rivelli AR, Munns R, Von Caemmerer S (2002) Factors influencing CO2 assimilation, leaf injury and growth in saltstressed durum wheat. Funct Plant Biol 29:1393–1403
  • Jellouli N, Ben Jouira H, Skouri H, Gargouri A, Ghorbel A, Mliki A (2008) Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress. J Plant. Physiol 165:471–481
  • Jellouli N, BenJouira H, Daldoul S, Chenennaoui S, Ghorbel A, Ben Salem A, Gargouri A (2010) Proteomic and transcriptomic analysis of grapevine PR10 expression during salt stress and functional characterization in yeast. Plant Mol Biol Rep 28:1–8. doi:10.1007/s11105-009-0116-1
  • Jiang Q, Roche D, Monaco TA, Durham S (2006) Gas exchange, chlorophyll parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Res 96:269–278
  • Kafi M (2009) Effect of salinity and light on photosynhtesis respiration and chlorophyll fluorescence in salt sensitive wheat (Triticum aestivum) cultivars. J Agric Sci Tech 11:547–555
  • Lee RH, Lin MC, Chen SCG (2004) A novel alkaline alphagalactosidase gene is involved in rice leaf senescence. Plant Mol Biol 55:281–295
  • Levadoux LD (1956) Wild and cultivated populations of Vitis vinifera L. Annales de l’Amelioration des Plantes 6:59–118
  • Liu Y, Zheng Y (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 313:25–332
  • Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE (2003) Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci 43:577–582
  • Maas EV, Hoffman GJ (1977) Crop salt tolerance current assessment. J Irrig Drain 103:115–134
  • Miyamoto R, Hatano T (1999) Introduction of the hiC6 gene, which encodes a homologue of a late embryogenesis abundant (LEA) protein, enhances freezing tolerance of yeast. J Plant Physiol 155:509–512
  • Moutinho-Pereira JM, Magalháes N, Torres De Castro LF, Chaves MM, Torres-Pereira JM (2001) Physiological responses of grapevine leaves to Bordeaux mixture under light stress conditions. Vitis 40(3):117–121
  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250
  • Ocete R, Deltio R, Lara M (1995) Les parasites des populations de la vigne sylvestre, Vitis vinifera silvestris (Gmelin) Hegi des Pyrenees Atlantiques (France). Vitis 34(3):191–192
  • Plenchette C, Furlan V, Fortin JA (1982) Effect of different endomycorrhizal fungi on five host plants grown on calcined montmorillonite clay. J Am Soc Hortic Sci 107:535–538
  • Prior LD, Grieve AM, Cullis BR (1992) Sodium chloride and soil texture interactions in irrigated field grown sultana grapevines, I Yield and fruit quality. Aust J Agric Res 43:1051–1066
  • Raymond W, Fung M, Wenping Q, Yingcai S, Schachtman DP, Huppert K, Csaba F, László GK (2007) Gene expression variation in grapevine species Vitis vinifera L. and Vitis aestivalis Michx. Gen Resour Crop Evol 54(7):1541–1553
  • Raymond WM, Fung MG, Csaba F, Laszlo GK, Yan H, Marsh E, McIntyre LM, Schachtman DP, Wenping Q (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146(1):236–249
  • Scarascia–Mugnozza G, De Angelis P, Matteucci G, Valentini R (1996) Long term exposure to to elevate CO₂ in a natural Quercus ilex L. community: net photosynthesis and photochemical efficiency of PSII at different levels of water stress. Plant Cell Environ 19:643–654
  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62
  • Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a non invasive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70
  • Shani U, Ben-Gal Al (2005). Long-term response of grapevines to salinity: osmotic effects and ion toxicity. Am J Enol Vitic 56(2):148–154
  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho T-HD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9
  • Snoussi H, Harbi Ben Slimane M, Ruiz-García L, Martínez-Zapater JM, Arroyo-García R (2004) Genetic relationship among cultivated and wild grapevine accessions from Tunisia. Genom 47:1211–1219
  • Stevens RM, Harvey G, Partington DL, Coombe BG (1999) Irrigation of grapevines with saline water at different growth stages 1 Effects on soil, vegetative growth, and yield. Aust J Agric Res 50:343–355
  • Storey R, Schachtman DP, Thomas MR (2003) Root structure and cellular chloride, sodium and potassium distribution in salinized grapevines. Plant Cell Environ 26:789–800
  • Tattersall EAR, Ergül A, Grimplet J, Deluc L, Bohlman MC, Vincent D, Lomen E, Osborne C, Wheatley MD, Blank R, Schlauch KA, Cushman JC, Cramer GR (2007) Gene expression profiling of grapevine responses to salt, osmotic and cold shock stresses. Funct Integr Genomics 7(4):317–333
  • Walker RR, Blackmore DH, Clingeleffer PR, Correll RL (2002) Rootsock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana). Yield and vigour interrelationships. Aust J Grape Wine Res 8:3–14
  • Walker RR, Blackmore DH, Clingeleffer PR, Correll RL (2004) Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana). Ion concentration in leaves and juice. Aust J Grape Wine Res 10:90–99
  • Xiao H, Nassuth A (2006) Stress and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep 25(9):968–977
  • Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257
  • Zair I, Chlyah A, Sabounji K, Tittahsen M, Chlyah H (2003) Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell Tissue Organ Cult 73:237–244
  • Zhao TY, Willis CJ, Mullen J, Meeley RB, Helentjaris T, Martin D, Downie B (2006) An alkaline alpha-galactosidase transcript is present in maize seeds and cultured embryo cells, and accumulates during stress. Seed Sci Res 16:107–121
  • Zoghlami N, Mliki A, Ghorbel A (2003) Occurrence and discrimination of spontaneous grapes native to Tunisia by RAPD markers. Acta Hortic 603:157–166
  • Zoglami N, Riahi L, Laucou V, Lacombe T, Ghorbel A, This P (2009) Origin and genetic diversity of Tunisian grapes as revealed by microsatellite markers. Scientia Horticultura 120:479–486
  • Zribi L, Gharbi F, Rezgui F, Rejeb S, Nahdi H, Rejeb MN (2009) Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato Solanum lycopersicum (variety Rio Grande). Sci Hortic 120(3):367–372

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a9b36fbb-d52a-4240-8022-f55625ced9d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.