PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 162 | 06 |

Tytuł artykułu

Określanie profili metabolitów lotnych produkowanych przez izolaty Trametes versicolor wykazujące antagonistyczne działanie w stosunku do Armillaria spp.

Treść / Zawartość

Warianty tytułu

EN
Determination of profiles of volatile metabolites produced by Trametes versicolor isolates antagonistic towards Armillaria spp.

Języki publikacji

PL

Abstrakty

EN
Armillaria root disease is one of the most important diseases causing losses in forestry, horticulture, pomiculture and agriculture. Fungi from Armillaria spp. infest roots and stem base in trees and shrubs, causing white wood rot. In Poland the most common species include Armillaria ostoyae (Romagn.) Herink, found both in coniferous and deciduous stands, and A. gallica Marxm. et Romagn. found in deciduous stands. Identification of antagonistic interactions between microorganisms in the soil medium enables to use their activity to protect plants against pathogens. Analyses were conducted on two Trametes versicolor isolates TR31 and TR55, collected from oak stumps, and 5 fungal species from the genus Armillaria: A. borealis Marxm. et Korhonen, A. cepistipes Velen., A. gallica, A. mellea (Vahl) P. Kumm. and A. ostoyae. Profiles of volatile compounds produced by T. versicolor isolates TR31 and TR55 determined in this study varied in their effect on growth of pathogens Armillaria borealis, A. cepistipes, A. gallica, A. mellea and A. ostoyae. TR31 more effectively than isolate TR55 inhibited growth of fungi from the genus Armillaria. Profiles of volatile compounds biosynthesised in the examined fungal cultures were assessed by headspace microextraction in a gas chromatograph coupled with a mass spectrometer. We detected 179 compounds in the analysed fungal cultures. They belonged to the following groups of chemical compounds: amines, alcohols, terpenes, aldehydes, ketones, hydrocarbons, heterocyclic compounds, esters and aromatic compounds (tab. 2). The most numerous group among the isolated volatile compounds comprised hydrocarbons, alcohols and esters at 32.4%, 16.2% and 14.5%, respectively. The highest concentrations reported in RU (i.e. the peak area of a given substances in relation to the peak area of the internal standard, i.e. tridecane) were recorded for aldehydes, alcohols and hydrocarbons. Among all the identified volatile compounds the highest concentration was observed for 2−methylbutanal. However, it was characteristic only of isolate TR31, which exhibited a greater capacity to inhibit growth of Armillaria spp. in comparison to isolate TR55 (fig.).

Wydawca

-

Czasopismo

Rocznik

Tom

162

Numer

06

Opis fizyczny

s.499-508,rys.,tab.,bibliogr.

Twórcy

  • Katedra Chemii, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 75, 60-637 Poznań
autor
  • Katedra Chemii, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 75, 60-637 Poznań
autor
  • Zakład Fitopatologii Leśnej, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 71 C, 60-637 Poznań
autor
  • Katedra Chemii, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 75, 60-637 Poznań

Bibliografia

  • Abraham W. R. 2001. Bioactive sesquiterpenes produced by fungi: are they useful for humans as well? Current Medicinal Chemistry 8: 583-606.
  • Börjesson T., Stöllman U., Schnürer J. 1992. Volatile metabolites produced by six fungal species compared with other indicators of fungal growth on cereal grains. Appl. Environ. Microbiol. 58: 2599-2605.
  • Bruce A., Kundzewicz A., Wheatley R. E. 1996. Influence of culture age on the volatile organic compounds produced by Trichoderma aureoviride and associated inhibitory effects on selected wood decay fungi. Mat. Org. 30: 79-94.
  • Bruce A., Wheatley R. E., Humphris S. N., Hackett C. A., Florence M. E. J. 2000. Production of volatile organic compounds by Trichoderma in media containing different amino acids and their effect on selected wood decay fungi. Holzforschung 54: 481-486.
  • Claeson A.-S., Levin J.-L., Blomquist G., Sunesson A.-L. 2002. Volatile metabolites from microorganisms grown on humid building materials and synthetic media. JEM J. Environ. Monit. 4 (5): 667-672.
  • Claydon N., Allan M., Hanson J. R., Avent A. G. 1987. Antifungal alkyl pyrones of Trichoderma harzianum. Trans. Brit. Mycol. Soc. 88: 503-513.
  • De Lucca A. J., Bouse S. M., Carter-Wientjes C., Bhatnagar D. 2012. Volatile profiles and aflatoxin production by toxigenic and non-toxigenic isolates of Aspergillus flavus grown on sterile and non-sterile cracked corn. Ann Angric. Environ. Med. 19 (1): 91-98.
  • Demyttenaere J. C. R., Morina R. M., de Kimpe N., Sandra P. 2004. Use of headspace solid-phase microextraction and headspace sorptive extraction for the detection of the volatile metabolites produced by toxigenic Fusarium species. Journal of Chromatography A 1027: 147-154.
  • Dickinson J. M., Hanson J. R., Hitchcock P. B., Claydon N. 1987. Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J. Chem. Soc. Perkin Transact. 1: 1885-1887.
  • Evans J. A., Eyre C. A., Rogers H. J., Boddy L., Muller C. T. 2008. Changes in volatile production during interspecific interactions between four wood rotting fungi growing in artificial media. Fungal Ecology 1: 57-68.
  • Ewen R. J., Jones P. R. H., Ratcliffe N. M., Spencer-Phillips P. T. N. 2004. Identification by gas chromatography--mass spectrometry of the volatile organic compounds emitted from the woodrotting fungi Serpula lacrymans and Coniophora puteana, and from Pinus sylvestris timber. Mycological Research 108: 806-814.
  • Fäldti J., Jonsell M., Nordlander G., Borg-Karlson A. K. 1999. Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their function as insect attractants. Journal of Chemical Ecology 25: 567-590.
  • Fiedler K., Schütz E., Geh S. 2001. Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int. J. Hyg. Environ. Health 204: 111-121.
  • Fox R. T. V. 2000. The extent of losses aims for managing Armillaria. W: Fox R. T. V. [red.]. Armillaria root rot: biology and control of honey fungus. Intercept, Andover. 139-149.
  • Hagle S. K., Shaw C. G. 1991. Avoiding and Reducing Losses from Armillaria Root Disease W: Shaw III C. G., Kile G. A. [red.]. Armillaria root diseases Red. Forest Service Agricultural Handbook 691. Washington D.C., USDA.
  • Hamilton-Kemp T. R., McCracken C. T. Jr., Loughrin J. H., Andersen R. A., Hildebrand D. F. 1992. Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea. J. Chem. Ecol. 18: 1083-1091.
  • Hood I. A., Redfern D. B., Kile G. A. 1991. Armillaria in planted hosts. W: Armillaria root diseases. W: Shaw III C. G., Kile G. A. [red.]. Forest Service Agricultural Handbook 691. Washington D.C., USDA. 122-149.
  • Humphris S. N., Wheatley R. E., Bruce A. 2001. The effects of specific volatile organic compounds produced by Trichoderma spp. On the growth of wood decay basidiomycetes. Holzforschung 55: 233-237.
  • Hynes J., Müller C. T., Jones T. H., Boddy L. 2007. Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicoülor. Journal of Chemical Ecology 33: 43-57.
  • Jeleń H. H. 2003. Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Letters in Applied Microbiology 36: 263-267.
  • Jeleń H. H., Mirocha C. J., Wąsowicz E., Kamiński E. 1995. Production of volatile sesquiterpenes by Fusarium sambucinum strains with different abilities to synthesize trichothecenes. Appl. Environ. Microbiol. 61: 3815-3820.
  • Kile G. A., McDonald G. I., Byler J. W. 1991. Ecology and disease in natural forests. W: Armillaria root diseases. W: Shaw III C. G., Kile G. A. [red.]. Forest Service Agricultural Handbook 691. Washington D.C., USDA. 102-121.
  • Kodrik M. 2001. Results of beech stump inoculation with antagonistic fungi. J. For. Sci. 47 (11): 505-512.
  • Korpi A., Järnberg J., Pasanen A. L. 2009. Microbial volatile organic compounds. Crit. Rev. Toxicol. 39: 139-193.
  • Larsen T. O., Frisvad J. C. 1995. Chemosystematics of Penicillium Based on Profiles of Volatile Metabolites. Mycol. Res. 99: 1167-1174.
  • Łakomy P. 2004. Środowiskowe uwarunkowania zasiedlenia pniaków drzew liściastych przez wybrane gatunki grzybów saprotroficznych oraz grzybów rodzaju Armillaria. Rocz. AR Pozn. Rozpr. Nauk 355: 1-164.
  • Łakomy P., Siwecki R. 2000. Grzyby z rodzaju Armillaria występujące w Nadleśnictwie Smolarz. Sylwan 144 (4): 115-121.
  • Madavi O. S., Mohammad A. M, Seyed M., Bagher N. A., Seyed J. M., Seyed A. M. G. M. S., Seyede M. J. S., Esmail K., Mehdi S. 2011. The Effects of Limonene and Orange Peel Extracts on Some Spoilage Fungi. International Journal of Molecular and Clinical Microbiology 1: 82-86.
  • Matysik S., Herbarth O., Mueller A. 2009. Determination of microbial volatile organic compounds (MVOCs) by passive sam-pling onto charcoal sorbents. Chemosphere 76: 114-119.
  • de Melo I. S., Faull J. L. 2000. Parasitism of Rhizoctonia solani by strains of Trichoderma spp. Sci. Agric. 57: 1.
  • Nilsson T., Larsen T. O., Montanarella L., Madsen J. O. 1996. Application of head-space solid-phase microextraction for the analysis of volatile metabolites emitted by Penicillium species. Journal of Microbiological Methods 25: 245-255.
  • Pearce M. H., Malajczuk N. 1990. Inoculation of karri (Eucalyptus diversicolor F. Muell.) thinning stumps with wood decay fungi for control of Armillaria luteobubalina. Mycol. Res. 94: 753-761.
  • Pearce M. H., Nelson E. E., Malajczuk N. 1995. Effect of the cord-forming saprotrophs Hypholoma austral and Phanerochaete filamentosa and ammonium sulphamate on establishment of Armillaria luteobubalina on stumps of Eucalyptus diversicolor. Mycol. Res. 99 (8): 951-956.
  • Reaves J. L., Crawford R. H. 1994. In vitro antagonism by Ulocladium botrytis of Phellinus weirii, Heterobasidion annosum, and Armillaria ostoyae. European Journal Of Forest Pathology 24 (6-7): 364-375.
  • Rösecke J., König W. A. 2000. Odorous compounds from the fungus Gloeophyllum odoratum. Flavour Fragr. 15: 315-319.
  • Rösecke J., Pietsch M., König W. A. 2000. Volatile constituents of wood-rotting basidiomycetes. Phytochemistry 54: 747-750.
  • Scarselletti R., Faull J. L. 1994. In vitro activity of 6-pentyl-á-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. Lycopersici. Mycol. Res. 98: 1207-1209.
  • Schalchi H., Hormazabal E., Becerra J., Birkett M., Alvear M., Vidal J., Quiroz A. 2011. Antifungal activity of volatile metabolites emitted by mycelial cultures of saprophytic fungi. Chemistry and Ecology 27 (6): 503-513.
  • Schnürer J., Olsson J., Börjesson T. 1999. Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet. Biol. 27: 209-217.
  • Sierota Z. 2001. Choroby lasu. CILP, Warszawa.
  • Splivallo R., Ottonello S., Gobel C., Mello A., Karlovsky P. 2011. Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytologist 189: 688-699.
  • Strobel G. A., Dirkse E., Sears J., Markworth C. 2001. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology – SGM 147: 2943-2950.
  • Sunesson A., Vaes W. H. J., Nilsson C. A., Blomquist G., Andersson B., Carlson R. 1995. Identification of volatile metabolites from five fungal species cultivated on two media. Applied and Environmental Microbiology 61: 2911-2918.
  • Thakeow P., Weißbecker B., Schütz S. 2006. Volatile organic compounds emitted from fungalrotting beech (Fagus sylvatica). Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie 15: 157-160.
  • Weise T., Kai M., Gummesson A., Troeger A., von Reuß S., Piepenborn S., Kosterka F., Sklorz M., Zimmermann R., Wittko F., Piechulla B. 2012. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. Vesicatoria. Beilstein J. Org. Chem. 8: 579-596.
  • Wheatley R. E. 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek 81: 357-364.
  • Wheatley R., Hackett C., Bruce A., Kundzewicz A. 1997. Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. Inhibitory to wood decay fungi. Int. Biodeter. Biodegr. 39: 199-205.
  • Whitfield F. B., Shea S. R., Gillen K. J., Shaw K. J. 1981. Volatile components from the roots of Acacia pulchella R.Br. and their effect on Phytophthora cinnamomi Rands. Australian Journal of Botany 29 (2): 195-208.
  • Wurst M., Kysilka R., Koza T. 1992. Analysis and isolation of indole alkaloids of fungi by high-performance liquid chromatography. J. Chromatogr. 593: 201-208.
  • Zamponi L., Michelozzi M., Capretti P. 2006. Effects of four monoterpenes on the growth in vitro of some Heterobasidion spp. and two Leptographium species. Journal of Plant Diseases and Protection 113: 164-167.
  • Żółciak A. 1999. Występowanie grzybów z rodzaju Armillaria (Fr.: Fr.) Staude w kompleksach leśnych w Polsce. Prace Inst. Bad. Leśn. A 890: 29-40.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a872b307-c98e-4761-9667-6d54f12698ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.