PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 4 |

Tytuł artykułu

A practical approach to the assessment of waterjet propulsion performance: the case of a waterjet-propelled trimaran

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To obtain a reasonable evaluation of the performance of waterjet propulsion at the design stage, a semi-theoretical and semi-empirical method is used to calculate the fundamental parameters of waterjet propulsion performance using an iterative approach. To calculate the ship’s resistance, a boundary element method based on three-dimensional potential flow theory is used to solve the wave-making resistance, and an empirical approach is used to evaluate the viscous resistance. Finally, the velocity and pressure of the capture area of the waterjet propulsion control volume are solved based on turbulent boundary layer theory. The iteration equation is established based on the waterjet-hull force-balance equation, and the change in the ship’s attitude and the local loss of the intake duct are considered. The performance parameters of waterjet propulsion, such as resistance, waterjet thrust, thrust deduction, and the physical quantity of the control volume, are solved by iteration. In addition, a PID-controlled free-running ship model is simulated using the RANS CFD method as a comparison. We apply the proposed approach and the RANS CFD method to a waterjetpropelled trimaran model, and the simulation process and the results are presented and discussed. Although there are some differences between the two methods in terms of the local pressure distribution and thrust deduction, the relative error in the evaluation results for the waterjet propulsion performance is generally reasonable and acceptable. This indicates that the present method can be used at the early stages of ship design without partial information about the waterjet propulsion system, and especially in the absence of a physical model of the pump

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

4

Opis fizyczny

p.27-38,fig.,ref.

Twórcy

autor
  • Dalian Maritime University, 1 Linghai Road, 116026 Dalian, China
autor
  • Dalian Maritime University, 1 Linghai Road, 116026 Dalian, China
autor
  • Texas A&M University, 400 Bizzell Street, 77843 College Station, USA
autor
  • Shanghai Ship and Shipping Research Institute, 600 Minsheng Road in Pudong New Area, 200135 Shanghai, China
autor
  • Shanghai Ship and Shipping Research Institute, 600 Minsheng Road in Pudong New Area, 200135 Shanghai, China

Bibliografia

  • 1. Van T.T. (1991): The Effect of Waterjet-Hull Interaction on Thrust and Propulsive Efficiency. Proceedings of 1st International Conference on Fast Sea Transportation Conference, Trondheim, Norway, 1991, 1149-1167.
  • 2. Alexander K., Coop H., Van T.T. (1993): Waterjet-Hull Interaction: Recent Experimental Results. SNAME Transactions, Vol. 102, 275-335.
  • 3. ITTC (1996): The Specialist Committee on Waterjets: Final Report and Recommendations to the 21st ITTC. Proceedings of the 21st International Towing Tank Conference, Trondheim.
  • 4. Park W.G., Jin H.J., Chun H.H., Kim M.C. (2005): Numerical Flow and Performance Analysis of Waterjet Propulsion System. Ocean Engineering, Vol. 32(14-15), 1740-1761.
  • 5. Park W.G., Yun H.S., Chun H.H., Kim M.C. (2005): Numerical Flow Simulation of Flush Type Intake Duct of Waterjet. Ocean Engineering, Vol. 32(17), 2107-2120
  • 6. Takai T. (2010): Simulation Based Design for High Speed Sea Lift with Waterjets by High Fidelity URANS Approach. Master’s thesis, University of Iowa.
  • 7. Takai T., Kandasamy M., Stern F. (2011): Verification and Validation Study of URANS Simulations for an Axial Waterjet Propelled Large High-Speed Ship. Journal of Marine Science and Technology, Vol. 16(4), 434-447.
  • 8. Altosole M., Benvenuto G., Figari M., Campora U. (2012): Dimensionless Numerical Approaches for the Performance Prediction of Marine Waterjet Propulsion Units. International Journal of Rotating Machinery, Vol. 2012, 1-12.
  • 9. Eslamdoost A. (2014): The Hydrodynamics of Waterjet/ Hull Interaction. PhD thesis, Chalmers University of Technology.
  • 10. Eslamdoost A., Larsson L., Bensow R. (2014): A Pressure Jump Method for Modeling Waterjet/Hull Interaction. Ocean Engineering, Vol. 88, 120-130.
  • 11. Gong J., Guo C.Y., Wang C., Wu T.C., Song K.W. (2019): Analysis of Waterjet-Hull Interaction and its Impact on the Propulsion Performance of a Four-Waterjet-Propelled Ship. Ocean Engineering, Vol. 180, 211-222.
  • 12. Zhang L., Zhang J.N., Shang Y.C. (2019): A Potential Flow Theory and Boundary Layer Theory Based Hybrid Method for Waterjet Propulsion. Journal of Marine Science and Engineering, Vol. 7(4), 113.
  • 13. Zhou L.L. (2012): Numerical Study of High Speed Ship Tail Wave. PhD thesis, Wuhan University of Technology.
  • 14. Liu Z.L., Yu R.T., Zhu Q.D. (2012): Study of a Method for Calculation Boundary Layer Influence Coefficients of Ship and Boat Propelled by Water-Jet. Journal of Ship Mechanics, Vol. 16(10), 1115-1121.
  • 15. Gong J., Guo C.Y., Song K.W. (2016): Experimental Study of Boundary Effect Coefficients of Waterjet Propelled Ship Model. 2016 Meeting of the Technical Committee on Ship Mechanics, 313-319.
  • 16. Zhang L., Zhang J.N., Shang Y.C. (2019): Stern FlapWaterjet-Hull Interactions and Mechanism: a Case of Waterjet-propelled Trimaran with Stern Flap. Journal of Offshore Mechanics and Arctic Engineering, DOI: https:// doi.org/10.1115/1.4045498.
  • 17. Wang J.H., Wan D.C. (2018): CFD Investigations of Ship Maneuvering in Waves Using naoe-FOAM-SJTU Solver. Journal of Marine Science and Application, Vol. 17(3), 443-458.
  • 18. Broglia R., Dubbioso G., Durante D., Mascio A.D. (2013): Simulation of Turning Circle by CFD: Analysis of Different Propeller Models and their Effect on Manoeuvring Prediction. Applied Ocean Research, Vol. 39, 1-10.
  • 19. Jin Y.T., Duffy J., Chai S.H., Magee A.R. (2019): DTMB 5415M Dynamic Manoeuvres with URANS Computation Using Body-Force and Discretised Propeller Models. Ocean Engineering,Vol. 182, 305-317.
  • 20. Baek D.G., Yoon H.S., Jung J.H., Kim K.S., Paik B.G. (2015): Effects of the Advance Ratio on the Evolution of a Propeller Wake. Computers and Fluids, Vol. 118, 32-43.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a81c93c6-190f-4c6b-b997-d847c9d1adbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.