PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 164 | 06 |

Tytuł artykułu

Endofity bakteryjne drzew leśnych - stan wiedzy i sposoby wykorzystania

Treść / Zawartość

Warianty tytułu

EN
Endophytic bacteria of the forest trees - state of the art and possible applications

Języki publikacji

PL

Abstrakty

EN
The interaction of endophytic microorganisms with plants are a common occurrence that brings mutual benefits to partners. Plants are the main habitat of bacteria that live inside their tissues and do not cause disease symptoms, but affect the growth and development of plants by producing substances that promote their development. Research on the diversity of endophytic bacteria associated with forest trees is insufficient – little is known about the diversity of endophytic bacteria, and especially their function in tree tissues. Bacteria positively affecting the host tree, among others, increase biomass growth by supporting tree health. The species diversity of endophytic bacteria in plants is influenced by the plant genotype, tissue type, development phase and environmental conditions. So far, bacteria that develop in root, stem, and leaf tissues have been best known. Among the forest trees in which the occurrence and diversity of endophytic bacteria have been studied, there are species such as pine, spruce, birch and oak. The presented paper is a review of the latest literature on the subject.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

164

Numer

06

Opis fizyczny

s.497-504,bibliogr.

Twórcy

autor
  • Zakład Ochrony Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul. Braci Leśnej 3, 05-090 Raszyn
  • Zakład Hodowli Lasu i Genetyki Drzew Leśnych, Instytut Badawczy Leśnictwa, Sękocin Stary, ul. Braci Leśnej 3, 05-090 Raszyn

Bibliografia

  • Anand R., Chanway C. P. 2013. Detection of GFP-labeled Paenibacillus polymyxa in auto fluorescing pine seedling tissues. Biology and Fertility of Soils 49: 111-118. DOI: https://doi.org/10.1007/s00374-012-0727-9.
  • Anand R., Grayston S., Chanway C. P. 2013. N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microbial Ecology 66: 369-374. DOI: https://doi.org/10.1007/s00248-013-0196-1.
  • Anand R., Paul L., Chanway C. 2006. Research on endophytic bacteria: recent advances with forest trees. W: Schulz B. J. E., Boyle C. J. C., Sieber T. N. [red.]. Microbial Root Endophytes. Soil Biology 9: 89-106. DOI: https://doi.org/10.1007/3-540-33526-9_6.
  • Bal A., Anand R., Berge O., Chanway C. 2012. Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata. Canadian Journal of Forest Research 42: 807-813. DOI: https://doi.org/ 10.1139/x2012-023.
  • Bal A., Chanway C. P. 2012a. Evidence of nitrogen fixation in lodgepole pine inoculated with diazotrophic Paenibacillus polymyxa. Botany 90: 891-896. DOI: https://doi.org/10.1139/b2012-044.
  • Bal A., Chanway C. P. 2012b. 15N foliar dilution of western red cedar in response to seed inoculation with diazotrophic Paenibacillus polymyxa. Biology and Fertility of Soils 48: 967-971. DOI: https://doi.org/10.1007/s00374-012-0699-9.
  • Bent E., Chanway C. P. 2001. The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Canadian Journal of Microbiology 44: 980-988. DOI: https:// doi.org/10.1139/w98-097.
  • Berg G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology 84 (1): 11-18.
  • Brooks D., Gonzalez C. F., Appel D. N. 1994. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biological Control 4: 373-381.
  • Cankar K., Kraigher H., Ravnikar M., Rupnik M. 2005. Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiology Letters 244 (2): 341-345.
  • Carrell A. A., Frank A. C. 2014. Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Frontiers in Microbiology 5: 333. DOI: https://doi.org/ 10.3389/fmicb.2014.00333.
  • Doty S. L., Dosher M. R., Singleton G. L., Moore A. L., Van Aken B., Stettler R. F., Strand S. E., Gordon M. P. 2005. Identification of an endophytic Rhizobium in stems of Populus. Symbiosis 39: 27-35.
  • Doty S. L., Oakley B., Xin G. 2009. Diazotrophic endophytes of native cottonwood and willow. Symbiosis 47: 23-33.
  • Ferreira A., Quecine M. C., Lacava P. T. 2008. Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiology Letters 287: 8-14.
  • Fillat U., Martín-Sampedro R., Macaya-Sanz D., Martín J. A., Ibarra D., Martínez M. J., Eugenio M. E. 2016. Screening of eucalyptus wood endophytes for laccase activity. Process Biochemistry 51: 589-598.
  • Filteau M., Lagace L., LaPointe G. 2010. Seasonal and regional diversity of maple sap microbiota revealed using community PCR fingerprinting and 16S rRNA gene clone libraries. Systematic and Applied Microbiology 33: 165-173.
  • Garbaye J. 1994. Helper bacteria: a new dimension to the micorrhizal symbiosis. New Phytologist 128: 197-210.
  • Germaine K., Keogh E., Garcia-Cabellos G. 2004. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiology Ecology 48: 109-118. DOI: 10.1016/j.femsec. 2003.12.009.
  • Hallmann J., Quadt-Hallmann A., Mahaffee W. F., Kloepper J. W. 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43: 895-914. DOI: https://doi.org/10.1139/m97-131.
  • Izumi H. 2011. Diversity of endophytic bacteria in forest trees controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology 84: 11-18.
  • Khan Z., Kandel S. L., Ramos D. N., Ettl G. J., Kim S. H., Doty S. L. 2015. Increased biomass of nursery-grown Douglas-fir seedlings upon inoculation with diazotrophic endophytic consortia. Forests 6 (10): 3582-3593. DOI: https://doi.org/10.3390/f6103582.
  • Klama J. 2004. Współżycie endofitów bakteryjnych z roślinami. Acta Scientiarum Polonorum 3 (1): 19-28.
  • Lupo S., Tiscornia S., Bettucci L. 2001. Endophytic fungi from flowers, capsules and seeds of Eucalyptus globules. Revista Iberoamericana de Micología 18: 38-41.
  • Mesa V., Navazas A., González-Gil R., González A., Weyens N., Lauga B., Gallego J. L. R., Sánchez J., Peláeza A. I. 2017. Use of Endophytic and Rhizosphere Bacteria to Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Applied and Environmental Microbiology 83 (8): e03411-16. DOI: https://doi.org/10.1128/AEM.03411-16.
  • Moore F. P., Barac T., Borremans B. 2006. Endophytic bacterial diversity in poplar trees. growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Systematic and Applied Microbiology 29: 539-556.
  • Moyes A. B., Kueppers L. M., Pett-Ridge J., Carper D. L., Vandehey N., O’Neil J., Frank A. C. 2016. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytologist 210: 657-668. DOI: https://doi.org/10.1111/nph.13850.
  • Perret X., Staehelin C., Broughton W. J. 2000. Molecular basis of symbiotic promiscuity. Microbiology and Molecular Biology Reviews 64: 180-201. DOI: 10.1128/MMBR.64.1.180-201.2000.
  • Pirttilä A. M. 2011. Endophytic bacteria in tree shoot tissues and their effects on host. W: Pirttilä A. M., Frank A. C. [red.]. Endophytes of forest trees, biology and applications. Forestry Sciences Series 80: 139-150. DOI: https:// doi.org/10.1007/978-94-007-1599-8_8.
  • Pirttilä A. M., Joensuu P., Pospiech H., Jalonen J., Hohtola A. 2004. Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiologia Plantarum 121: 305-312.
  • Pirttilä A. M., Laukkanen H., Pospiech H., Myllylä R., Hohtola A. 2000. Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66: 3073-3077. DOI: https://doi.org/10.1128/aem.66.7.3073-3077.2000
  • Pohjanen J., Koskimäki J. J., Sutela S., Ardanov P., Suorsa M., Niemi K., Sarjala T., Häggman H., Pirttilä A. M. 2014. Interaction with ectomycorrhizal fungi and endophytic Methylobacterium affects nutrient uptake and growth of pine seedlings in vitro. Tree Physiology 34: 993-1005. DOI: https://doi.org/10.1093/treephys/tpu062.
  • Sawicka A. 1985. Dinitrogen fixation in the rhizosphere of meadow grasses. W: Welte E., Szabloes I. [red.]. Fight against hunger through improved plant nutrition. 145-150.
  • Schaefer A. L., Lappala C. R., Morlen R. P., Pelletier D. A., Lu T. Y. S., Lankford P. K., Harwood C. S., Greenberg E. P. 2013. LuxR- and LuxI-type quorum-sensing circuits are prevalent in members of the Populus deltoides microbiome. Applied Environmental Microbiology 79: 5745-5752. DOI: https://doi.org/10.1128/AEM.01417-13.
  • Schaefer A. L., Oda Y., Coutinho B. G., Pelletier D., Weiburg J., Venturi V., Greenberg E. P., Harwood C. S. 2016. A LuxR homolog in a cottonwood tree endophyte that activates gene expression in response to a plant signal or specific peptides. mBio 7:e01101-16. DOI: https://doi.org/10.1128/mBio.01101-16.
  • Shishido M., Brevil C., Chanway C. P. 1999. Endophytic colonization of spruce by plant growth promoting rhizobacteria. FEMS Microbiology Ecology 29: 191-196. DOI: https://doi.org/10.1111/j.1574-6941.1999.tb00603.x.
  • Shishido M., Chanway C. P. 2000. Colonization and growth of outplanted spruce seedlings pre-inoculated with plant growth-promoting rhizobacteria in the greenhouse. Canadian Journal of Forest Research 30: 848-854. DOI: https://doi.org/10.1139/x00-010.
  • Shishido M., Loeb B. M., Chanway C. P. 1995. External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Canadian Journal of Microbiology 41: 707-713. DOI: https://doi.org/10.1139/m95-097.
  • Strzelczyk E. 2001. Endofity. Drobnoustroje środowiska glebowego, aspekty fizjologiczne, biochemiczne, genetyczne. W: Dahm H., Pokojska-Burdziej A. [red.]. Wydawnictwo Adam Marszałek, Toruń. 97-107.
  • Subba Rao N. S., Tilak K. V. B. R., Singh C. S. 1985. Effect of combined inoculation of Azospirillumm brasilense and versicular-arbuscular mycorrhiza on pearl millet (Pennisetum americanum). Plant Soil 84: 283-286.
  • Taghavi A., Garafola C., Monchy S. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Applied Environmental Microbiology 75: 748-757.
  • Taghavi S., Barac T., Greenberg B., Borremans B., Vangronsveld J., van der Lelie D. 2005. Horizontal gene transfer to endogenous endophytic bacteria from Poplar improves phytoremediation of toluene. Applied Environmental Microbiology 71: 8500-8505. DOI: https://doi.org/10.1128/ aem.71.12.8500-8505.
  • Tang Q., Puri A., Padda K. P., Chanway C. P. 2017. Biological nitrogen fixation and plant growth promotion of lodgepole pine by an endophytic diazotroph Paenibacillus polymyxa and its GFP-tagged derivative. Botany 95: 611-619. DOI: https://doi.org/10.1139/cjb-2016-0300.
  • Ulrich K., Ulrich A., Ewald D. 2008. Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiology Ecology 63: 169-180.
  • Wang E. T., Tan Z. Y., Guo X. W. 2006. Diverse endophytic bacteria isolated from a leguminous tree Conzattia multiflora grown in Mexico. Archives of Microbiology 186: 251-259.
  • Weyens N., Boulet J., Adriaensen D. 2012. Contrasting colonization and plant growth promoting capacity between wild type and a gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar. Plant Soil 356: 217-230. DOI: https://doi.org/10.1007/s11104-011-0831-x.
  • Weyens N., van der Lelie D., Taghavi S., Newman L., Vangronsveld J. 2009. Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends in biotechnology 27: 591-598. DOI: https://doi.org/ 10.1016/j.tibtech.2009.07.006.
  • Weyens N., Truyens S., Dupae J., Newman L., Taghavi S., van der Lelie D., Carleer R., Vangronsveld J. 2010. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environmental Pollution 158: 2915-2919. DOI: http://dx.doi.org/10.1016/j.envpol.2010.06.004.
  • Yang H., Puri A., Padda K. P., Chanway C. P. 2016. Effects of Paenibacillus polymyxa inoculation and different soil nitrogen treatments on lodgepole pine seedling growth. Canadian Journal of Forest Research 46: 816-821. DOI: https://doi.org/10.1139/cjfr-2015-0456.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a818f676-0942-4c93-b8ca-7d0b50d9634e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.