PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 70 | 1 |

Tytuł artykułu

Breeding system variability, pollination biology, and reproductive success of rare Polemonium caeruleum L. in NE Poland

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Zmienność systemu rozrodu, biologia zapylania i sukces reprodukcyjny Polemonium caeruleum L. w Polsce płn.-wsch.

Języki publikacji

Abstrakty

EN
Polemonium caeruleum (Polemoniaceae) represents a very interesting system of compatibility transition. Studies of its biological and ecological properties in the context of the breeding system of various populations may help to understand the evolutionary mechanism of this process. We investigated some aspects of the breeding system, diversity and foraging behavior of the visitors, and relationship between population properties and fruit set in three populations from NE Poland. We found distinct compatibility systems in two studied populations and showed that if a population is self-compatible (SC), selfing is mediated by insects via geitonogamous pollen transfer. Despite the population properties (compatibility, visitor diversity and activity, population size, density, or floral display), P. caeruleum is not pollen limited and pollinators are highly important as a key factor determining the high reproductive success. Visitor assemblages (including key pollinators, bumblebees, and honey bees) and their foraging behavior on inflorescences vary between the populations, which may influence differences in the breeding system. The selfincompatible population was visited by a more diverse group of insects from Hymenoptera, Diptera, Lepidoptera, Heteroptera, and Coeloptera, which may favor effective cross-pollen transfer, whereas the SC population was pollinated mainly by Apis mellifera, which may promote mixed-mating. Studies on a wider range of P. caeruleum populations are needed to determine selective factors responsible for compatibility transition.
PL
U wielosiłu błękitnego, Polemonium caeruleum obserwuje się zróżnicowanie systemu samozgodności w różnych populacjach. Badania dotyczące właściwości populacji tego gatunku w kontekście jego potencjału systemu rozrodu są niezbędne w zrozumieniu ewolucyjnego mechanizmu tego procesu. W trzech populacjach P. caeruleum zlokalizowanych w płn.-wsch. Polsce analizowano system rozrodu, różnorodność i aktywność owadów wizytujących kwiaty wielosiła oraz relacje pomiędzy właściwościami populacji a sukcesem reprodukcyjnym. W populacjach stwierdzono odmienny system samozgodności. W populacji samozgodnej, samozapłodnienie może nastąpić jedynie przy udziale wektorów zewnętrznych, na drodze geitonogamii. Niezależnie od właściwości populacji (samozgodności lub samoniezgodności, różnorodności i aktywności owadów wizytujących, wielkości populacji, zagęszczenia oraz wielkości wystawy kwiatowej) P. caeruleum nie jest limitowany dostępnością zapylaczy. Zapylacze stanowią kluczowy czynnik kształtujący wysoki sukces reprodukcyjny we wszystkich badanych populacjach. Zespoły owadów wizytujących kwiaty wielosiłu (włączając w to również kluczowych zapylaczy jakimi są trzmiele i pszczoły) oraz ich aktywność na kwiatostanie różnią się pomiędzy populacjami, co wpływa na odmienny wzorzec realizowanego systemu rozrodu. Stwierdzono, że populacja samoniezgodna była wizytowana przez różnorodne owady należące do Hymenoptera, Diptera, Lepidoptera, Heteroptera i Coeloptera, których zachowanie mogło efektywnie realizować zapłodnienie krzyżowe. Z kolei populacja samozgodna była obsługiwana głównie przez Apis mellifera, której behawior mógł promować mieszany system rozrodu. Przedstawione w pracy wyniki mają charakter badań wstępnych. W celu ustalenia, które czynniki selekcyjne są odpowiedzialne za zmienność systemu samozgodności w różnych populacjach P. caeruleum konieczne są dalsze badania w większej liczbie populacji.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

70

Numer

1

Opis fizyczny

Article 1709 [12p.], fig.,ref.

Twórcy

Bibliografia

  • 1. Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, et al. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology. 2004;85:2408–2421. https://doi.org/10.1890/03-8024
  • 2. Bartkowska MP, Johnston MO. Pollen limitation and its influence on natural selection through seed set. J Evol Biol. 2015;28(11):2097–2105. https://doi.org/10.1111/jeb.12741
  • 3. van Etten ML, Tate JA, Anderson SH, Kelly D, Ladley JJ, Merrett MF, et al. The compounding effects of high pollen limitation, selfing rates and inbreeding depression leave a New Zealand tree with few viable offspring. Ann Bot. 2015;116(5):833–843. https://doi.org/10.1093/aob/mcv118
  • 4. Kalisz S, Vogler D. Benefits of autonomous selfing under unpredictable pollinator environments. Ecology. 2003;84(11):2928–2942. https://doi.org/10.1890/02-0519
  • 5. Busch JW. The evolution of self-compatibility in geographically peripheral populations of Leavenworthia alabamica (Brassicaceae). Am J Bot. 2005;92(9):1503–1512. https://doi.org/10.3732/ajb.92.9.1503
  • 6. Charlesworth D. Evolution of plant breeding systems. Curr Biol. 2006;16(17):726–735. https://doi.org/10.1016/j.cub.2006.07.068
  • 7. Barrett SC, Harder LD. Ecology and evolution of plant mating. Trends Ecol Evol. 1996;11(2):73–79. https://doi.org/10.1016/0169-5347(96)81046-9
  • 8. Kalisz S, Vogler DW, Hanley KM. Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature. 2004;430(7002):884–887. https://doi.org/10.1038/nature02776
  • 9. Barrett SC. The evolution of plant sexual diversity. Nat Rev Genet. 2002;3(4):274–284. https://doi.org/10.1038/nrg776
  • 10. Ohashi K, Yahara T. Visit larger displays but probe proportionally fewer flowers: counterintuitive behaviour of nectar-collecting bumble bees achieves an ideal free distribution. Funct Ecol. 2002;16(4):492–503. https://doi.org/10.1046/j.1365-2435.2002.00644.x
  • 11. Brys R, Jacquemyn H, Endels P, van Rossum F, Hermy M, Triest L, et al. Reduced reproductive success in small populations of the self-incompatible Primula vulgaris. J Ecol. 2004;92(1):5–14. https://doi.org/10.1046/j.0022-0477.2004.00840.x
  • 12. Jersáková J, Johnson SD, Kindlmann P. Mechanisms and evolution of deceptive pollination in orchids. Biol Rev. 2006;81:219–235. https://doi.org/10.1017/S1464793105006986
  • 13. Kindlmann P, Jersáková J. Effect of floral display on reproductive success in terrestrial orchids. Folia Geobot. 2006;41(1):47–60. https://doi.org/10.1007/BF02805261
  • 14. Sargent RD, Ackerly DD. Plant-pollinator interactions and the assembly of plant communities. Trends Ecol Evol. 2008;23(3):123–130. https://doi.org/10.1016/j.tree.2007.11.003
  • 15. Winfree R, Bartomeus I, Cariveau DP. Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst. 2011;42(1):1–22. https://doi.org/10.1146/annurev-ecolsys-102710-145042
  • 16. Mustajärvi K, Siikamäki P, Rytkönen S, Lammi A. Consequences of plant population size and density for plant–pollinator interactions and plant performance. J Ecol. 2001;89(1):80–87. https://doi.org/10.1046/j.1365-2745.2001.00521.x
  • 17. Dauber J, Biesmeijer JC, Gabriel D, Kunin WE, Lamborn E, Meyer B, et al. Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach. J Ecol. 2010;98(1):188–196. https://doi.org/10.1111/j.1365-2745.2009.01590.x
  • 18. Nattero J, Malerba R, Medel R, Cocucci A. Factors affecting pollinator movement and plant fitness in a specialized pollination system. Plant Syst Evol. 2011;296(1):77–85. https://doi.org/10.1007/s00606-011-0477-4
  • 19. Zimmerman M. Reproduction in Polemonium: competition for pollinators. Ecology. 1980;61(3):497–501. https://doi.org/10.2307/1937414
  • 20. Grant V, Grant K. Flower pollination in the Phlox family. New York, NY: Columbia University Press; 1965.
  • 21. Pigott CD. Polemonium caeruleum L. J Ecol. 1958;46(2):507–525. https://doi.org/10.2307/2257416
  • 22. Zych M, Stpiczyńska M, Roguz K. Reproductive biology of the red list species Polemonium caeruleum (Polemoniaceae). Bot J Linn Soc. 2013;173(1):92–107. https://doi.org/10.1111/boj.12071
  • 23. Plitmann U, Levin DA. Breeding systems in the Polemoniaceae. Plant Syst Evol. 1990;170(3):205–214. https://doi.org/10.1007/BF00937704
  • 24. Hultén E, Fries M. Atlas of North European vascular plants. Königstein: Koeltz Scientific Books; 1986.
  • 25. Chwil M. The structure of some floral elements and the nectar production rate of Polemonium caeruleum L. Acta Agrobot. 2010;63(2):25–32. https://doi.org/10.5586/aa.2010.029
  • 26. Stpiczyńska M, Kamińska M, Zych M. Nectary structure in the dichogamous flowers of Polemonium coeruleum L. Acta Biol Crac Ser Bot. 2012;54(2):1–8. https://doi.org/10.2478/v10182-012-0019-6
  • 27. Holub J, Procházka F. Red list of vascular plants of the Czech Republic – 2000. Preslia. 2000;72:187–230.
  • 28. Moser D, Gygax A, Baumler B, Wyler N, Palese R. Lista Rossa delle felci e piante a fiori minacciate della Svizzera. Berna: Ufficio Federale dell’Ambiente, delle Foreste e del Paesaggio; 2002. (Ambiente-Esecuzione).
  • 29. ESRI. ArcGIS desktop: release 10. Redlands, CA: Environmental Systems Research Institute; 2011.
  • 30. StatSoft Inc. STATISTICA user’s guide. Version 10. Cracow: StatSoft Inc.; 2010.
  • 31. Waser NM, Price MV. Reproductive costs of self-pollination in Ipomopsis aggregata (Polemoniaceae): are ovules usurped? Am J Bot. 1991;78:1036–1043. https://doi.org/10.2307/2444892
  • 32. de Jong TJ, Waser NM, Price MV, Ring RM. Plant size, geitonogamy and seed set in Ipomopsis aggregata. Oecologia. 1992;89(3):310–315. https://doi.org/10.1007/BF00317407
  • 33. Brys R, Jacquemyn H, Hermy M. Pollination efficiency and reproductive patterns in relation to local plant density, population size and floral display in the rewarding Listera ovata (Orchidaceae). Bot J Linn Soc. 2008;157(4):713–721. https://doi.org/10.1111/j.1095-8339.2008.00830.x
  • 34. Tałałaj I, Brzosko E. Selfing potential in Epipactis palustris, E. helleborine and E. atrorubens (Orchidaceae). Plant Syst Evol. 2008;276(1):21–29. https://doi.org/10.1007/s00606-008-0082-3
  • 35. Boberg E, Ågren J. Despite their apparent integration, spur length but not perianth size affects reproductive success in the moth-pollinated orchid Platanthera bifolia. Funct Ecol. 2009;23(5):1022–1028. https://doi.org/10.1111/j.1365-2435.2009.01595.x
  • 36. Hill LM, Brody AK, Tedesco CL. Mating strategies and pollen limitation in a globally threatened perennial Polemonium vanbruntiae. Acta Oecol (Montrouge). 2008;33(3):314–323. https://doi.org/10.1016/j.actao.2008.01.009
  • 37. Johnson SD, Nilsson LA. Pollen carryover, geitonogamy, and the evolution of deceptive pollination systems in orchids. Ecology. 1999;80(8):2607–2619. https://doi.org/10.1890/0012-9658(1999)080%5B2607:PCGATE%5D2.0.CO;2
  • 38. Nilsson LA. Processes of isolation and introgressive interplay between Platanthera bifolia (L.) Rich and P. chlorantha (Custer) Reichb. (Orchidaceae). Bot J Linn Soc. 1983;87(4):325–350. https://doi.org/10.1111/j.1095-8339.1983.tb00997.x
  • 39. Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc Lond. 2005;84:1–54. https://doi.org/10.1111/j.1095-8312.2004.00400.x
  • 40. Knuth P. Handbuch der Blütenbiologie, II Band, 2. Teil: Lobeliaceae bis Gnetaceae. Leipzig: Verlag von Wilhelm Engelmann; 1899.
  • 41. Rutkowski L. Polemonium caeruleum L. Wielosił błękitny. In: Kaźmierczakowa R, Zarzycki K, editors. Polska czerwona księga roślin. Paprotniki i rośliny kwiatowe. Kraków: Instytut Botaniki im. W. Szafera PAN i Instytut Ochrony Przyrody PAN; 2000. p. 310–311.
  • 42. Goodwillie C, Kalisz S, Eckert CG. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst. 2005;36(1):47–79. https://doi.org/10.1146/annurev.ecolsys.36.091704.175539
  • 43. Fisogni A, Cristofolini G, Rossi GM, Galloni M. Pollinator directionality as a response to nectar gradient: promoting outcrossing while avoiding geitonogamy. Plant Biol. 2011;13(6):848–856. https://doi.org/10.1111/j.1438-8677.2011.00453.x
  • 44. Jermakowicz E, Ostrowiecka B, Tałałaj I, Pliszko A, Kostro-Ambroziak A. Male and female reproductive success in natural and anthropogenic populations of Malaxis monophyllos (L.) Sw. (Orchidaceae). Biodiversity: Research and Conservation. 2015;39(1):37–44. https://doi.org/10.1515/biorc-2015-0024
  • 45. Melen MK, Herman JA, Lucas J, O’Malley RE, Parker IM, Thom AM, et al. Reproductive success through high pollinator visitation rates despite selfincompatibility in an endangered wallflower. Am J Bot. 2016;103(11):1979–1989. https://doi.org/10.3732/ajb.1600193
  • 46. Ågren J. Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum salicaria. Ecology. 1996;77(6):1779–1790. https://doi.org/10.2307/2265783
  • 47. Grindeland JM, Sletvold N, Ims RA. Effects of floral display size and plant density on pollinator visitation rate in a natural population of Digitalis purpurea. Funct Ecol. 2005;19(3):383–390. https://doi.org/10.1111/j.1365-2435.2005.00988.x
  • 48. Geslin B, Gauzens B, Thébault E, Dajoz I. Plant pollinator networks along a gradient of urbanisation. PloS One. 2013;8(5):e63421. https://doi.org/10.1371/journal.pone.0063421
  • 49. Goulson D. Why do pollinators visit proportionally fewer flowers in large patches? Oikos. 2000;91(3):485–492. https://doi.org/10.1034/j.1600-0706.2000.910309.x
  • 50. Zimmerman ML. Optimal foraging, plant density and the marginal value theorem. Oecologia. 1981;49:148–153. https://doi.org/10.1007/BF00349181
  • 51. Waites AR, Ågren J. Pollinator visitation, stigmatic pollen loads and amongpopulation variation in seed set in Lythrum salicaria. J Ecol. 2004;92(3):512–526. https://doi.org/10.1111/j.0022-0477.2004.00893.x
  • 52. Willmer P. Pollination and floral ecology. Princeton, NJ: Princeton University Press; 2011. https://doi.org/10.1515/9781400838943
  • 53. Knight TM. Floral density, pollen limitation, and reproductive success in Trillium grandiflorum. Oecologia. 2003;137(4):557–563. https://doi.org/10.1007/s00442-003-1371-8
  • 54. Burd M. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot Rev. 1994;60(1):83–139. https://doi.org/10.1007/BF02856594
  • 55. Ghazoul J. Pollen and seed dispersal among dispersed plants. Biol Rev. 2005;80(3):413–443. https://doi.org/10.1017/S1464793105006731
  • 56. Cheptou PO, Avendaño VLG. Pollination processes and the Allee effect in highly fragmented populations: consequences for the mating system in urban environments. New Phytol. 2006;172(4):774–783. https://doi.org/10.1111/j.1469-8137.2006.01880.x
  • 57. Galen C, Stanton ML. Bumble bee pollination and floral morphology: factors influencing pollen dispersal in the alpine sky pilot, Polemonium viscosum (Polemoniaceae). Am J Bot. 1989;76(3):419–426. https://doi.org/10.2307/2444612
  • 58. Groom MJ. Allee effects limit population viability of an annual plant. Am Nat. 1998;151(6):489–496. https://doi.org/10.1086/286135

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a734d285-3e5a-421f-8870-0f74130e5094
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.