PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 40 | 02 |

Tytuł artykułu

Effect of methyl jasmonate on gummosis in petioles of culinary rhubarb (Rheum rhabarbarum L.) and the determination of sugar composition of the gum

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study aimed to know the key chemical compound influencing gummosis in petioles of intact growing culinary rhubarb (Rheum rhabarbarum L.) with special emphasis on its sugar composition. The application of methyl jasmonate (JA-Me, 0.5 and 1% in lanolin, w/w) in the middle of intact petiole of growing rhubarb substantially induced gummosis in the entire petioles, below and above the treatment, within several days. JA-Me at 0.5% in lanolin greatly stimulated ethylene production in intact petiole of growing rhubarb, on the 3rd day after JA-Me treatment, ethylene level being increased five times or more. However, an ethylene-releasing compound, ethephon (2-chloroethylphosphonic acid, 1 and 2% in lanolin, w/w) alone had no effect on gummosis. Analysis of gum polysaccharides by a gel permeation chromatography with a Tosho TSK-gel G5000PW gel permeation column revealed that almost all of rhubarb gum polysaccharides were eluted near the void in this gel chromatography system, suggesting that molecular mass of rhubarb gum polysaccharides are more than 500 kDa, while precise mass has not been decided in this study. Analysis of gum sugar composition after hydrolysis revealed that rhubarb gums is rich in galactose (ca. 30%), arabinose (ca. 20%), and galacturonic acid (15–20%), although other sugars also existed in small quantities. These results suggest that the key chemical compound of gummosis in petioles of rhubarb is jasmonates rather than ethylene, and gum polysaccharides consist of not only pectic arabinogalactans but also homogalacturonans.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

40

Numer

02

Opis fizyczny

Article 30 [8p.], fig.,ref.

Twórcy

  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96‑100 Skierniewice, Poland
autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96‑100 Skierniewice, Poland
autor
  • Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1‑1 Gakuen‑cho, Naka‑ku, Sakai, Osaka 599‑8531, Japan
autor
  • Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1‑1 Gakuen‑cho, Naka‑ku, Sakai, Osaka 599‑8531, Japan

Bibliografia

  • Babst BA, Ferrieri RA, Gray DW, Lerdau M, Schlyer DJ, Schueller M, Thorpe MR, Orians CM (2005) Jasmonic acid induced rapid changes in carbon transport and partitioning in Populus. New Phytol 167:63–72
  • Boothby D (1983) Gummosis of stone-fruit trees and their fruits. J Food Sci Agric 34:1–7
  • Chou CM, Kao CH (1992) Stimulation of 1-aminocyclopropane-1-carboxylic acid-dependent ethylene production in detached rice leaves by methyl jasmonates. Plant Sci 83:137–141
  • Churms SC, Stephen AM (1984) Structural studies of an arabinogalactan-protein from the gum exudate of Acacia robusta. Carbohydr Res 133:105–123
  • De Pinto GL, Martinez L, De Gotera OG, Vera A, Rivas C, Ocando E (1995) Comparison of two Pithecellobium gum exudates. Biochem Syst Ecol 23:849–853
  • Ding J, Ning B, Fu G, Lu Y, Dong S (2000) Separation of rhubarb anthraquinones by capillary electrochromatography. Chromatographia 52:285–288
  • Emery RJN, Reid DM (1996) Methyl jasmonate effects on ethylene synthesis and organ-specific senescence in Helianthus annuus seedlings. Plant Growth Regul 18:213–222
  • Foust CM, Marshall DE (1991) Culinary rhubarb production in North America: history and recent statistics. HortScience 26:1360–1363
  • Gao L, Wang Y, Li Z, Zhang H, Ye J, Li G (2016) Gene expression changes during the gummosis development of peach shoots in response to Lasiodiplodia theobromae infection using RNA-Seq. Front Physiol 7:170
  • Huang Q, Lu G, Shen H-M, Chung MCM, Ong CN (2007) Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev 27:609–630
  • Hung KT, Kao CH (1996) Promotive effect of jasmonates on the senescence of detached maize leaves. Plant Growth Regul 19:77–83
  • Ishikawa M, Kuroyama H, Takeuchi Y, Tsumuraya Y (2000) Characterization of pectin methyltransferase from soybean hypocotyls. Planta 210:782–791
  • Izhaki I (2002) Emodin—a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155:205–217
  • Klass C, Muka AA (2012) Rhubarb Curculio. Lixus concavus Say; Family: Curculionidae. Insect Diagnostic Laboratory. Department of Entomology, Cornell University, 2144 Comstock Hall, Ithaca, NY., USA, http://www2.entomology.cornell.edu (prepared 1976, updated 2012)
  • Konishi T, Kotake T, Soraya D, Matsuoka K, Koyama T, Kaneko S, Igarashi K, Samejima M, Tsumuraya Y (2008) Properties of family 79 β-glucuronidases that hydrolyze β-glucuronosyl and 4-O-methyl-β-glucronosyl residues of arabinogalactan-protein. Carbohydr Res 343:1191–1201
  • Kuhl JC, DeBoer VL (2008) Genetic diversity of rhubarb cultivars. J Amer Soc Hort Sci 133:587–592
  • Lepse L (2009) Comparison in vitro and traditional propagation methods of rhubarb (Rheum rhabarbarum) according to morphological features and yield. Acta Hort 812:265–269
  • Li Z, Wang Y-T, Gao L, Wang F, Ye J-L, Li G-H (2014) Biochemical changes and defence responses during the development of peach gummosis caused by Lasiodiplodia theobromae. Eur J Plant Pathol 138:195–207
  • Li M, Liu M, Peng F, Fang L (2015) Influence factors and gene expression patterns during MeJA-ind uced gummosis in peach. J Plant Physiol 182:49–61
  • Li T, Xu Y, Zhang L, Ji Y, Tan D, Yuan H, Wang A (2017) The jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. Plant Cell 29:1316–1334
  • Martínez M, De Pinto GL, Alvárez S, De Troconis NG, Ocando E, Rivas C (1995) Composition and properties of Albizia lebbeck gum exudate. Biochem Syst Ecol 23:843–848
  • Milo B, Risco E, Vila R, Iglesias J, Cañigueral S (2002) Characterization of a fucoarabinogalactan, the main polysaccharide from the gum exudate of Croton urucurana. J Nat Prod 65:1143–1146
  • Miyamoto K, Kotake T, Sasamoto M, Saniewski M, Ueda J (2010) Gummosis in grape hyacinth (Muscari armeniacum) bulbs: hormonal regulation and chemical composition of gums. J Plant Res 123:363–370
  • Miyamoto K, Oka M, Uheda E, Ueda J (2013) Changes in metabolism of cell wall polysaccharides in oat leaves during senescence: relevance to the senescence-promoting effect of methyl jasmonates. Acta Physiol Plant 35:2675–2683
  • Miyamoto K, Kotake T, Jarecka Boncela A, Saniewski M, Ueda J (2015) Hormonal regulation of gummosis and composition of gums from bulbs of hyacinth (Hyacinthus orientalis). J Plant Physiol 174:1–4
  • Orozco-Villafuerte J, Cruz-Sosa F, Ponce-Alquicira E, Vernon-Carter EJ (2003) Mesquite gum: fractionation and characterization of the gum exuded from Prosopis laevigata obtained from plant tissue culture and from wild trees. Carbohydr Polym 54:327–333
  • Osman ME, Williams PA, Menzies AR, Phillips GO (1993) Characterization of commercial samples of gum arabic. J Agric Food Chem 41:71–77
  • Pereira-Netto AB, Pettolino F, Cruz-Silva CTA, Simas FF, Bacic A, Carneiro-Leão A, Iacomini M, Maurer JBB (2007) Cashew-nut tree exudate gum: identification of an arabinogalactan-protein as a constituent of the gum and use on the stimulation of somatic embryogenesis. Plant Sci 173:468–477
  • Rayirath UP, Lada RR, Caldwell CD, Asiedu SK, Sibley KJ (2011) Role of ethylene and jasmonic acid on rhizome induction and growth in rhubarb (Rheum rhabarbarum L.). Plant Cell Tiss Organ Cult 105:253–263
  • Rumpunen K, Henriksen K (1999) Phytochemical and morphological characterization of seventy-one cultivars and selections of culinary rhubarb (Rheum spp.). J Hort Sci Biotechnol 74:13–18
  • Saniewski M (1989) Relationship between stimulatory effect of methyl jasmonate on gum formation and ethylene production in tulip stem. Bull Pol Acad Sci Ser Biol Sci 37:41–48
  • Saniewski M (1997) The role of jasmonates in ethylene biosynthesis. In: Kanellis AK et al (eds) Biology and biotechnology of the plant hormone ethylene. Kluwer, Dordrecht, pp 39–45
  • Saniewski M, Czapski J (1985) Stimulatory effect of methyl jasmonate on ethylene production in tomato fruits. Experientia 41:257–258
  • Saniewski M, Puchalski J (1988) The induction of gum formation in the leaf, stem and bulb by methyl jasmonate in tulips. Bull Pol Acad Sci Ser Biol Sci 36:35–38
  • Saniewski M, Węgrzynowicz-Lesiak E (1994) Is ethylene responsible for gum formation induced by methyl jasmonate in tulip stem? J Fruit Ornam Plant Res 2:79–90
  • Saniewski M, Węgrzynowicz-Lesiak E (1995) The role of ethylene in methyl jasmonate-induced gum formation in stem of tulips. Acta Hortic 394:305–315
  • Saniewski M, Nowacki J, Czapski J (1987a) The effect of methyl jasmonate on ethylene production and ethylene-forming enzyme activity in tomatoes. J Plant Physiol 129:175–180
  • Saniewski M, Nowacki J, Lange E, Czapski J (1987b) The effect of methyl jasmonates on ethylene and 1-aminocyclopropane-1-carboxylic acid production in preclimacteric and postclimacteric Jonathan apples. Fruit Sci Rep 13:193–200
  • Saniewski M, Miszczak A, Kawa-Miszczak L, Węgrzynowicz-Lesiak E, Miyamoto K, Ueda J (1998a) Effects of methyl jasmonate on anthocyanin accumulation, ethylene production, and CO₂ evolution in uncooled and cooled tulip bulbs. J Plant Growth Regul 17:33–37
  • Saniewski M, Miyamoto K, Ueda J (1998b) Methyl jasmonate induces gums and stimulates anthocyanin accumulation in peach shoots. J Plant Growth Regul 17:121–124
  • Saniewski M, Miyamoto K, Ueda J (2004a) Gum induction by methyl jasmonate in fruits, stems and petioles of Prunus domestica L. Acta Hort 636:151–158
  • Saniewski M, Ueda J, Miyamoto K, Okubo H, Puchalski J (2004b) Interaction of methyl jasmonate and ethephon in gum formation in tulip bulbs. J Fac Agric Kyushu Univ 49:207–215
  • Saniewski M, Miyamoto K, Okubo H, Saniewska A, Puchalski J, Ueda J (2007) Gummosis in tulip (Tulipa gesneriana L.): focus on hormonal regulation and carbohydrate metabolism. Floric Ornam Biotechnol 1:34–40
  • Sanz LC, Fernandez-Maculet JC, Gomez E, Vioque JM, Olias JM (1993) Effect of methyl jasmonates on ethylene biosynthesis and stomatal closure in olive leaves. Phytochemistry 33:285–289
  • Sato C, Aikawa K, Sugiyama S, Nabeta K, Masuta C, Matsuura H (2011) Distal transport of exogenously applied jasmonoyl-isoleucinne with wounding stress. Plant Cell Physiol 52:509–517
  • Seo HS, Song JT, Cherong J-J, Lee Y-H, Lee Y-W, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98:4788–4793
  • Skrzypek E, Miyamoto K, Saniewski M, Higuchi N, Ueda J (2005a) Gum formation in tulips affected by methyl jasmonate requires changes in sugar metabolism. Acta Hort 673:215–222
  • Skrzypek E, Miyamoto K, Saniewski M, Ueda J (2005b) Identification of jasmonic acid and its methyl ester as gum-inducing factors in tulips. J Plant Res 118:27–30
  • Skrzypek E, Miyamoto K, Saniewski M, Ueda J (2005c) Jasmonates are essential factors inducing gummosis in tulips: mode of action of jasmonates focusing on sugar metabolism. J Plant Physiol 162:495–505
  • Szwejda J, Rogowska M (2002) Uwaga na szkodniki rabarbaru. Hasło Ogrodnicze, No, p 10
  • Tomogami S, Noge K, Abe M, Agrawal GK, Rakwal R (2012) Methyl jasmonate is transported to distal leaves via vascular process matabolizing itself into JA-Ile and triggering VOCs emission as defensive metabolites. Plant Signal Behav 7:1378–1381
  • Ueda J, Miyamoto K, Aoki M (1994) Jasmonic acid inhibits the IAA-induced elongation of oat coleoptile segments: a possible mechanism involving the metabolism of cell wall polysaccharides. Plant Cell Physiol 35:1065–1070
  • Ueda J, Miyamoto K, Kamisaka S (1995) Inhibition of the synthesis of cell wall polysaccharides in oat coleoptile segments by jasmonic acid: relevance to its growth inhibition. J Plant Growth Regul 14:69–76
  • Ueda J, Miyamoto K, Hashimoto M (1996) Jasmonates promote abscission in bean petiole explants: its relationship to the metabolism of cell wall polysaccharides and cellulose activity. J Plant Growth Regul 15:189–195
  • Veen H (1983) Silver thiosulphate: an experimental tool in plant science. Sci Hort 20:211–224
  • Vinod VTP, Sashidhar RB, Sarma VUM, Saradhi UVRV (2008) Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): a tree gum from India. J Agric Food Chem 56:2199–2207
  • Wakabayashi K, Hoson T, Kamisaka S (1997) Suppression of cell wall stiffening along coleoptiles of wheat (Triticum aesativum L.) seedlings grown under osmotic stress conditions. J Plant Res 110:311–316
  • Walkey DGA, Matthews KA (1979) Rapid clonal propagation of rhubarb (Rheum rhaponticum L.) from meristem-tips in tissue culture. Plant Sci Lett 14:287–290
  • Wang XM, Ren Y (2009) Rheum tanguticum, an endangered medicinal plant endemic to China. J Med Plants Res 3:1195–1203
  • Wang A, Yang M, Liu J (2005) Molecular phylogeny, recent radiation and evolution of gross morphology of the rhubarb genus Rheum (Polygonaceae) inferred from chloroplast DNA trnL-G sequences. Ann Bot (Lond.) 96:488–498

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a7010824-c671-4e97-9791-ca50ea22ed09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.