PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 60 | 3 |

Tytuł artykułu

Interactions between potentially pathogenic fungi and natural human microbiota

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The human body is composed of 1014 cells, of which only 10% of them belong to the human host itself: the remaining 90% are microorganisms. Commensal microorganisms are necessary for the proper functioning of the human body and covers an area that could potentially become sites of adhesion of pathogenic microorganisms, it thus represents a form of competition for potential pathogens. The coexistence of fungi and bacteria in cases of systemic infections is a significant diagnostic and therapeutic problem, and the human immune system reacts differently, depending on the pathogen. Numerous publications exist concerning the relationship between microorganisms belonging to different ecological groups, the majority of which concern the interaction between macro-organisms and potential pathogens, or the synergistic relationship between parasitic species. However, there is still too little information concerning the role of natural microbiota in maintaining homeostasis and the relationships between particular species inhabiting the human organism.

Wydawca

-

Rocznik

Tom

60

Numer

3

Opis fizyczny

p.159-168,ref.

Twórcy

autor
  • Department of Biology and Medical Parasitology, Medical University of Lodz, Haller Sq.1, 90-647 Lodz, Poland

Bibliografia

  • [1] Hooper L.V., Bry L., Falk P.G., Gordon J.I. 1998. Host-microbial symbiosis in the mammalian intenstine: exploring an internal ecosystem. BioEssays 20: 336-343.
  • [2] Binek M. 2012. Human microbiome – health and disease. Postępy Mikrobiologii 51: 27-36.
  • [3] Li K., Bihan M., Yooseph S., Methé B.A. 2012. Analyses of the microbial diversity across the human microbiome. PLoS ONE 7: e32118. doi: 10.1371/journal.pone.0032118.
  • [4] Li K., Bihan M., Methé B.A. 2013. Analyses of the stability and core taxonomic memberships of the human microbiome. PLoS ONE 8: e63139. doi: 10.1371/journal.pone.0063139.
  • [5] Human Microbiome Project Consortium. 2012. A framework for human microbiome research. Nature 486: 215-221.
  • [6] Human Microbiome Project Consortium. 2012b. Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214.
  • [7] Kostic A.D., Howitt M.R., Garrett W.S. 2013. Exploring host-microbiota interactions in animal models and humans. Genes and Development 27: 701-718.
  • [8] Mac Farlane S., Dillon J.F. 2007. Microbial biofilms in the human gastrointestinal tract. Journal of Applied Microbiology 102: 1187-1196.
  • [9] Dynowska M., Góralska K., Szewczyk T., Buczyńska E. 2008. Species of fungi isolated from the alimentary tract of people subjected to endoscopy, which deserve attention – reconnaissance studies. Mikologia Lekarska 15: 80-83.
  • [10] Dynowska M., Góralska K., Troska P., Barańska G., Biedunkiewicz A., Ejdys E., Sucharzewska E. 2011. Results of long-standing mycological analyses of biological materials originating from selected organ ontocenoses – yeast and yeast-like fungi. Wiadomości Parazytologiczne 57: 89-93.
  • [11] Kurnatowska A.J., Kurnatowski P. 2008. Some types of oral cavity mycosis. Mikologia Lekarska 15: 29-32.
  • [12] Mnichowska-Polanowska M., Kaczała M., Giedrys-Kalemba S. 2009. Characteristic of Candida biofilm. Mikologia Lekarska 16: 159-164.
  • [13] Góralska K., Dynowska M., Barańska G., Troska P., Tenderenda M. 2011. Taxonomic characteristic of yeast-like fungi and yeasts isolated from respiratory system and digestive tract of human. Mikologia Lekarska 18: 211-219.
  • [14] Kołwzan B. 2011. Analysis of biofilms – their formation and functioning. Ochrona Środowiska 33: 3-14.
  • [15] Nowak M., Kurnatowski P. 2009. Biofilm caused by fungi – structure, quorum sensing, morphogenetic changes, resistance to drugs. Wiadomości Parazytologiczne 55: 19-25.
  • [16] Mason K.L., Erb Downward J.R., Mason K.D., Falkowski N.R., Eaton K.A., Kao J.Y., Young V.B., Huffnagle G.B. 2012. Candida albicans and bacterial micro biota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infection and Immunity 80: 3371-3380.
  • [17] Matejczyk M., Suchowierska M. 2011. Characteristic of the phenomenon of quorum sensing and its meaning in terms of formation and functioning of biofilm in environmental engineering, civil engineering, medicine and household. Civil and Environmental Engineering 2: 71-75.
  • [18] Maynard C.L., Elson C.O., Hatton R.D., Weaver C.T. 2012. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489: 231-241.
  • [19] Nowak A., Libudzisz Z. 2004. Mutagenic and carcinogenic metabolites formed by human colonic flora. Postępy Mikrobiologii 43: 321-339.
  • [20] Shoaie S., Karlsson F., Mardinoglu A., Nookaew I., Bordel S., Nielsen J. 2013. Understanding the interactions between bacteria in the human gut through metabolic modelling. Scientific Reports 3: 2532. doi:10.1038/srep02532.
  • [21] Morales D.K., Hogan D.A. 2010. Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathogens 6: e1000886. doi: 10.1371/journal.ppat.1000886.
  • [22] Ghannoum M.A., Jurevic R.J., Mukherjee P.K., Cui F., Sikaroodi M., Naqvi A., Gillevet P.M. 2010. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathogens 6: e1000713. doi: 10.1371/journal.ppat.1000713.
  • [23] Millsap K.W., van der Mei H.C., Bos R., Busscher H.J. 1998. Adhesive interactions between medically important yeasts and bacteria. FEMS Microbiology Reviews 21: 321-336.
  • [24] Holmes A.R., McNab R., Jenkinson H.F. 1996. Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesionreceptor interactions. Infection and Immunity 64: 4680-4685.
  • [25] Shirtliff M.E., Peters B.M., Jabra-Rizk M.A. 2009. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiology Letters 299: 1-8.
  • [26] Diaz P.I., Xie Z., Sobue T., Thompson A., Biyikoglu B., Ricker A., Ikonomou L., Dongari-Bagtzoglou A. 2012. Synergistic interaction between Candida albicans and commensal oral streptococci in novel in vitro mucosal model. Infection and Immunity 80: 620-632.
  • [27] Suárez-Moreno Z.R., Kerényi Á., Pongor S., Venturi V. 2010. Multispecies microbial communities. Part I: quorum sensing signalling in bacterial and mixed bacterial-fungal communities. Mikologia Lekarska 17: 108-112.
  • [28] Harriot M.M., Noverr M.C. 2010. Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation. Antimicrobial Agents and Chemotherapy 54: 3746-3755.
  • [29] Peters B.M., Jabra-Rizk M.A., Scheper M.A., Leid J.G., Costerton J.W., Schirtliff M.E. 2010. Microbial interactions and differential protein expression in Staphylococcus aureus – Candida albicans dualspecies biofilms. FEMS Immunology & Medical Micro biology 59: 493-503.
  • [30] Mangan A. 1969. Interactions between some aural Aspergillus species and bacteria. Journal of General Microbiology 58: 261-266.
  • [31] Gil N.F., Martinez R.C.R., Gomez B.C., Nomizo A., De Martinis E.C.P. 2010. Vaginal lactobacilli as potential probiotics against Candida spp. Brazilian Journal of Microbiology 41: 6-14.
  • [32] Strus M., Kucharska M., Kukla G., Brzychczy-Włoch M., Maresz K., Heczko P.B. 2005. The in vitro activity of vaginal Lactobacillus with probiotic properties against Candida. Infectious Diseases in Obsterics and Gynecology 13: 69-75.
  • [33] Chassot F., Camacho D.P., Patussi E.V., Donatti L., Svidzinski T.I.E., Consolaro M.E.L. 2010. Can Lactobacillus acidophilus influence the adhesion capacity of Candida albicans on the combined contraceptive vaginal ring? Contraception 81: 331-335.
  • [34] Guo J., Brosnan B., Furey A., Arendt E.K., Murphy P., Coffey A. 2012. Antifungal activity of Lactobacillus against Microsporum canis, Microspo rum gypseum and Epidermophyton floccosum. Bioengineered Bugs 3: 104-113.
  • [35] Peleg A.Y., Hogan D.A., Mylonakis E. 2010. Medically important bacterial-fungal interactions. Nature Reviews Microbiology 8: 340-349.
  • [36] Park S.J., Han K-H., Park J.Y., Choi S.J., Lee K-H. 2014. Influence of bacterial presence on biofilm formation of Candida albicans. Yonsei Medicine Journal 55: 449-458.
  • [37] Holcombe L.J., McAlester G., Munro C.A., Enjalbert B., Brown A.J.P., Gow N.A.R., Ding C., Butler G., O’Gara F., Morrissey J.P. 2010. Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. Microbiology 156: 1476-1486.
  • [38] Kerr J.R., Taylor G.W., Rutman A., Høiby N., Cole P.J., Wilson R. 1999. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. Journal of Clinical Pathology 52: 385-387.
  • [39] Gibson J., Sood A., Hogan D.A. 2009. Pseudomonas aeruginosa – Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Applied and Environmental Microbiology 75: 504-513.
  • [40] Kerr J.R. 1994. Suppression of fungal growth exhibited by Pseudomonas aeruginosa. Journal of Clinical Microbiology 32: 525-527.
  • [41] Brandl M.T., Carter M.Q., Parker C.T., Chapman M.R., Huynh S., Zhou Y. 2011. Salmonella biofilm formation on Aspergillus niger involves cellulosechitin interactions. PLoS ONE 6: e25553. doi:10.1371/journal.pone.0025553.
  • [42] Frases S., Chaskes S., Dadachova E., Casadevall A. 2006. Induction by Klebsiella aerogenes of a melanin-like pigment in Cryptococcus neoformans. Applied and Environmental Microbiology 72: 1542-1550.
  • [43] Hipp S.S., Lawton W.D., Chen N.C., Gaafar H.A. 1974. Inhibition of Neisseria gonorrhoeae by a factor produced by Candida albicans. Applied Microbiology 27: 192-196.
  • [44] Ovchinnikova E.S., Krom B.P., Busser H.J., van der Mei H.C. 2012. Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicans hyphae. BMC Microbiology 12.281. doi:10.1186/1471-2180-12-281.
  • [45] Harriott M.M., Noverr M.C. 2009. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrobial Agents and Chemotherapy 53: 3914-3922.
  • [46] Swidergall M., Ernst A.M., Ernst J.F. 2013. Candida albicans mucin Msb2 is a broad-range protectant against antimicrobial peptides. Antimicrobial Agents and Chemotherapy 57: 3917-3922.
  • [47] Ricker A., Vickerman M., Dongari-Bagtzoglou A. 2014. Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans. Journal of Oral Microbiology 6: 23419. doi:10.3402/jom.v6.23419.
  • [48] Dworecka-Kaszak B. 2008. Are the fungi gossiping? Signaling and quorum sensing – phenomen responsible for microorganism communication. Mikologia Lekarska 15: 164-171.
  • [49] Wargo M.J., Hogan D.A. 2006. Fungal-bacterial interactions: a mixed bag of mingling microbes. Current Opinion in Microbiology 9: 359-364.
  • [50] Smith M.G., Des Etages S.G., Snyder M. 2004. Microbial synergy via an ethanol-triggered pathway. Molecular and Cellular Biology 24: 3874-3884.
  • [51] Lavermicocca P., Valerio F., Visconti A. 2003. Antifungal activity of phenyllactic acid against molds isolated from bakery products. Applied and Environmental Microbiology 69: 634-640.
  • [52] Lind H., Sjögren J., Gohil S., Kenne L., Schnürer J., Broberg A. 2007. Antifungal compounds from cultures of dairy propionibacteria type strains. FEMS Microbiology Letters 271: 310-315.
  • [53] Ghasemi-Niri S.F., Solki S., Didari T., Mozaffari S., Baeeri M., Rezvanfar M.A., Mohammadirad A., Jamalifar H., Abdollahi M. 2012. Better efficacy of Lactobacillus casei in combination with Bifidobacterium bifidum or Saccharomyces boulardii in recovery of inflammatory markers of colitis in rat. Asian Journal of Animal and Veterinary Advances 7: 1148-1156.
  • [54] Gotteland M., Poliak L., Cruchet S., Brusner O. 2005. Effect of regular ingestion of Sacharomyces boulardii plus inulin or Lactobacillus acidophilus LB in children colonized by Helicobacter pylori. Acta Paedriatrica 94: 1747-1757.
  • [55] Xu X-L., Lee R.T.H., Fand H-M., Wang Y-M., Li R., Zou H., Zhu Y., Wang Y. 2008. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclise Cyr1p. Cell Host & Microbe 4: 28-39.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a63483d8-559a-4e5e-bde9-9e17043c3f20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.