PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 68 | 3 |

Tytuł artykułu

Encapsulation of gallic acid with acid-modified low dextrose equivalent potato starch using spray- and freeze-drying techniques

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The main objective of the present study was to investigate the effect of spray- and freeze-drying techniques on the microencapsulation of a gallic acid compound using the acid-hydrolyzed low dextrose equivalent potato starch as a wall material. During the experiment, it was possible to achieve encapsulation efficiency of 70–84% for the freeze-dried and 65–79% for spray-dried samples, without statistically signifi cant difference (P>0.05) in the encapsulation efficiency between the mentioned methods. Spray-dried samples formed spherical capsules with a higher number of micropores. Meanwhile, freeze-dried samples were shapeless, exposed larger pore volume (from 2.4×10–3 to 9.5×10–3 cm3 /g against 1.2×10–3 4.9×10–3 cm3 /g; analyzed by Barrett-Joyner-Halenda method) and overall higher surface area (0.632–1.225 m²/g against 0.472–1.296 m²/g; analyzed by Barrett-Joyner- -Halenda method). Due to this fact, more gallic acid molecules were exposed to environmental factors and can be counted as losses. In addition, freeze-dried samples demonstrated lower water activity than spray-dried samples (0.075±0.014 against 0.178±0.008). Results showed that it is not practical to use freeze-drying for modelling encapsulation for food industry without a special necessity for protection of easily degradable chemical compounds. The present work makes a basis for the future studies of the microencapsulated phenolics application in food production.

Wydawca

-

Rocznik

Tom

68

Numer

3

Opis fizyczny

p.273-280,fig.,ref.

Twórcy

autor
  • Faculty of Food Technology, Latvia University of Agriculture, Rigas 22, LV-3004, Jelgava, Latvia
autor
  • Institute of General Chemical Engineering, Faculty of Material Science and Applied Chemistry, Riga Technical University, Pulka 3, LV-1007, Riga, Latvia
autor
  • Faculty of Food Technology, Latvia University of Agriculture, Rigas 22, LV-3004, Jelgava, Latvia

Bibliografia

  • 1. Barbosa M.I.M.J., Borsarelli C.D., Mercadante Z., Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food. Res. Int., 2005, 38, 989–994.
  • 2. Barrett E.P., Joyner L.G., Halenda P.P., The determination of pore volume and area distributions in porous substances. I. Computations form nitrogen isotherms. J. Am. Chem. Soc., 1951, 73, 373–380.
  • 3. Bhandari B., Howes T., Relating the stickiness property of foods undergoing drying and dried products to their surface energetics. Dry. Technol., 2005, 23, 781–797.
  • 4. Boonyai P., Bhandri B., Howes T., Stickiness measurement techniques for food powders: a review. Powder Technol., 2004, 145, 34–46.
  • 5. Brunauer S., Emmett P.H., Teller E., Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60, 309–319.
  • 6. Carneiro H.C.F.F., Tonon R.V., Grosso C.R.F.F., Hubinger M.D., Encapsulation efficiency and oxidative stability of fl axseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food. Eng., 2013, 115, 443–451.
  • 7. Daneshfar A., Ghaziaskar H.S., Homayoun N., Solubility of gallic acid in methanol, ethanol, water, and ethyl acetate. J. Chem. Eng. Data., 2008, 53, 776–778.
  • 8. De Boer J.H., Lippens B.C., Linsen B.G., Broekhoff J.C.P., Van den Hauvel A., Osinga Th.J., The t-curve of multimolecular N2 -adsorption. J. Colloid Interf. Sci., 1966, 21, 405–414.
  • 9. Du J., Ge ZZ., Xu Z., Zou B., Zhang Y., Li C.M., Comparison of the efficiency of fi ve different drying carriers on the spray drying of persimmon pulp powders. Dry. Technol., 2014, 32, 1157–1166.
  • 10. Dubey R., Shami T.C., Bhasker Rao K.U., Microencapsulation technology and applications. Defence Sci. J., 2009, 59, 82–95.
  • 11. Dubinin M.M., Radushkevich L.V., The equation of the characteristic curve of activated charcoal. Proc. Natl. Acad. Sci. USSR, 1947, 55, 331–333.
  • 12. Flink J.M., Energy analysis in dehydration process. Food Technol., 1977, 31, 77–79.
  • 13. Gibbs B.F., Kermasha S.A.I., Mulligan C.N., Encapsulation in the food industry: a review. Int. J. Food Sci. Nutr., 1999, 50, 213–224.
  • 14. Im H.W., Park Y.-S., Leontowicz H., Leontowicz M., Namiesnik J., Ham K.-S., Kang S.-G., Najiman K., Gorinstein S., The thermostability, bioactive compounds and antioxidant activity of some vegetables subjected to different durations of boiling: investigation in vitro. LWT – Food Sci. Technol., 2011, 44, 92–99.
  • 15. Im H.W., Suh B.S., Lee S.U., Kozukue N., Ohnisi-Kameyama M., Levin C.E., Friedman M., Analysis of phenolic compounds by high-performance liquid chromatography and liquid chromatography/mass spectrometry in potato plant flowers, leaves, stems, and tubers and in home-processed potatoes. J. Agr. Food. Chem., 2008, 56, 3341–3349.
  • 16. Inglett G.E., Gelbman P., Reineccius G.A., Encapsulation of orange oil. Use of oligosaccharides from α-amylase modified starches on maize, rice, cassava, and potato. 1988, in: ACS Symposium Series (eds. S.J. Risch, G.A. Reineccius). American Chemical Society, Washington, DC, pp. 30–36.
  • 17. Jenkins P.J., Donald A.M., Gelatinisation of starch: a combined AXS/WAXS/DSC and SANS study. Carbohyd. Res., 1998, 308, 133–147.
  • 18. Jung J.K., Lee S.U., Kozukue N., Levin C.E., Friedman M., Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots. J. Food. Compos. Anal., 2011, 24, 29–37.
  • 19. Kopelman I.J., Meydav S., Weinberg S., Storage studies of freeze dried lemon crystals. J. Food Technol., 1977, 12, 403–410.
  • 20. Lane J.H., Eynon L., Determination of reducing sugars by means of Fehling’s solution with methylene blue as internal indicator. J. Soc. Chem. Ind. Trans., 1923, 32–36.
  • 21. Leszczynski W., New methods for determination of starch gelatinization temperatures. Starch-Starke, 1987, 39, 375–378.
  • 22. Loksuwan J., Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocoll., 2007, 21(5–6), 928–935.
  • 23. Loksuwan J., Process for producing modified starch used as encapsulating agents. Thailand, patent No 2146, 2005 (in Thai).
  • 24. Lorentzen J., Quality and economics in freeze-drying. Chem. Ind., 1979, 14, 465–468.
  • 25. Mulcahy E.M., Mulvihill D.M., O’Mahony J.A., Physicochemical properties of whey protein conjugated with starch hydrolysis products of different dextrose equivalent values. Int. Dairy. J., 2016, 53, 20–28.
  • 26. Oikonomopoulou V.P., Krokida M.K., Structural proportion of dried potatoes, mushrooms, and strawberries as a function of freeze-drying pressure. Dry. Technol., 2012, 30, 351–361. 27. Papadakis S.E., Bahu R.E., The sticky issues of drying. Dry. Technol., 1992, 10, 817–837.
  • 28. Pasrija D., Ezhilarasi P.N., Indrani D., Anandharamakrishnan C. Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. LWT – Food Sci. Technol., 2015, 64, 289–296.
  • 29. Poshadri A., Kuna A., Microencapsulation technology: A review. J. Res. ANGRAU, 2010, 38, 86–102.
  • 30. Pourcel L., Routaboul J.M., Cheynier V., Lepiniec L., Debeaujon I., Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant. Sci., 2007, 12, 29–36.
  • 31. Pycia K., Juszczak L., Gałkowska D., Witczak M., Jaworska G., Maltodextrins from chemically modified starches. Selected physicochemical properties. Carbohyd. Polym., 2016, 146, 301–309.
  • 32. Quantachrome Instruments. Quadrasorb EVOTM surface area & pore size analyser, 2013, [https://quantachrome.com/pdf_brochures/evo_07160_brochure_revA.pdf].
  • 33. Ramirez M.J., Giraldo G.I., Orrego C.E., Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulation. Powder Technol., 2015, 277, 89–96.
  • 34. Ratti C., Hot air and freeze-drying of high-value foods: a review. J. Food. Eng., 2001, 49, 311–319.
  • 35. Reineccius G.A., Flavor Encapsulation. Food. Rev. Int., 1989, 5, 147–176.
  • 36. Reineccius G.A., Yan. C., Factors controlling the deterioration of spraydried flavourings and unsaturated lipids. Flavour. Frag. J., 2016, 31, 5–21.
  • 37. Robert P., Gorena T., Romeo N., Sepulveda E., Chavez J., Saenz C., Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int. J. Food. Sci. Technol., 2010, 45, 1386–1494.
  • 38. Saikia S., Mahnot N.K., Mahanta C.L., Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food. Chem., 2015, 171, 144–152.
  • 39. Shahidi F., Han X.Q. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr., 1993, 33, 501–547.
  • 40. Singh N., Kamath V., Narasimhamurthy K., Rajini P.S., Protective effect of potato peel extract against carbon tetrachlorideinduced liver injury in rats. Environ. Toxicol. Pharmacol., 2008, 26, 241–246.
  • 41. Varavinit S., Chaokasem N., Shobsngob S., Studies of flavor encapsulation by agents produced from modified sago and tapioca starches. Starch-Starke, 2001, 53, 281–287.
  • 42. Zuidam N.J. Shimoni E., Overview of microencapsulates for use in food products or processes and methods to make them. 2009, in: Encapsulation Technologies for Food Active Ingredients and Food Processing (eds. N.J. Zuidam, V.A. Nedovic). Springer, Dordrecht, The Netherlands, pp. 3–31.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a5a17595-64cc-49bb-9488-1cb7050987a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.