EN
Nut butter can be recognized as a functional food substitute for the animal butter. This study aimed to investigate the effects of mono- and di-glycerides and lecithin on the physicochemical properties and sensory characteristics of hazelnut butter. For this purpose, mono- and di-glycerides, and lecithin were employed in the hazelnut butter formulation at 0, 1, and 2 g/100 g addition levels. The proximate composition, acidity, peroxide value, and texture parameters were evaluated. Although adding mono- and di-glycerides and lecithin to the hazelnut butter formulation did not significantly change the adhesiveness, it increased their hardness. The sensory analysis revealed that lecithin and mono- and di-glycerides did not significantly affect the color, taste, and flavor of the butters. The highest texture, spreadability, and overall acceptance scores were observed when lecithin was used at the level of 2 g/100 g. The lowest acidity had butter containing mono- and di-glycerides at the level of 1 g/100 g. The peroxide values showed no significant changes during the 90-day storage. The principal component analysis (PCA) allowed discriminating among the features. The partial least squares regression (PLSR) models were applied to find the relationship between sensory and instrumental data. Thus, chemometric approach appears to be a promising technique for the analysis of hazelnut butter.