PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 21 |

Tytuł artykułu

Spatiotemporal variation of biochemical composition of organic matter and number of bacteria in core sediments of selected beaches of the southern Baltic Sea

Treść / Zawartość

Warianty tytułu

PL
Czasowa i przestrzenna zmienność biochemicznego składu materii organicznej i liczby bakterii w osadach wybranych plaż południowego Morza Bałtyckiego

Języki publikacji

EN

Abstrakty

EN
Sandy sediments coming from three beaches of the southern Baltic Sea were collected and analyzed. Investigated beaches were divided according to strength of anthropogenic impact and degree of sheltering. The first beach was situated in Ustka on the eastern side of the mouth of the Słupia River, second in Czołpino and the last one in Puck. Core sediment samples were collected seasonally, depending on the influence of the sea water on the examined sediments. At each station, surface sediments (0-5 cm) were collected as well as sediments at the depth of 10-15 cm. The general content of organic matter, proteins, lipids, carbohydrates, organic carbon and total bacterial number were determined. The results of the conducted tests reveal, that anthropopressure, degree of sheltering, the depth where the collected sediments were taken and the direct influence of the sea water on the sediments have impact on the chemical composition of organic matter and bacterial number in beach sediments.
PL
Pobierano i analizowano piaszczyste osady pochodzące z trzech plaż południowego Bałtyku, które zostały podzielone na podstawie wpływu antropopresji i stopnia osłonięcia plaży. Pierwsza plaża położona była w Ustce we wschodniej części ujścia rzeki Słupi, druga w Czołpinie, a ostatnia w Pucku. Próbki osadów plażowych zbierano sezonowo, w zależności od wpływu wody morskiej na badane osady. Na każdym stanowisku pobierano osady powierzchniowe (0-5 cm), a także osady na głębokości 10-15 cm. Określono zawartość materii organicznej, białek, lipidów, węglowodanów, węgla organicznego i całkowitej liczby bakterii. Wyniki przeprowadzonych badań wykazały, że antropopresja, stopień osłonięcia plaży, głębokość pobieranych osadów i bezpośredni wpływ wody morskiej na osady oddziałują na skład chemiczny materii organicznej i liczbę bakterii w osadach plażowych.

Wydawca

-

Rocznik

Tom

21

Opis fizyczny

p.155-176,fig.,ref.

Twórcy

autor
  • Department of Environmental Chemistry, Institute of Biology and Environmental Protection, Faculty of Mathematic and Natural Sciences, Pomeranian University in Slupsk, Arciszewskiego 22b, 76-200 Slupsk, Poland
autor
  • Department of Environmental Chemistry, Institute of Biology and Environmental Protection, Faculty of Mathematic and Natural Sciences, Pomeranian University in Slupsk, Arciszewskiego 22b, 76-200 Slupsk, Poland
autor
  • Department of Environmental Chemistry, Institute of Biology and Environmental Protection, Faculty of Mathematic and Natural Sciences, Pomeranian University in Slupsk, Arciszewskiego 22b, 76-200 Slupsk, Poland
autor
  • Department of Environmental Chemistry, Institute of Biology and Environmental Protection, Faculty of Mathematic and Natural Sciences, Pomeranian University in Slupsk, Arciszewskiego 22b, 76-200 Slupsk, Poland

Bibliografia

  • Arnosti C., 1998. Rapid potential rates of extracellular enzymatic hydrolysis in Arctic sediments. Limnol. Oceanogr., 43 (2), 315-324.
  • Biddanda B., Riemann F., 1992. Detrital carbon and nitrogen relations, examined with degrading cellulose. Mar. Ecol., 13 (3), 271-283.
  • Bigus K., Trojanowski J., 2011. Ocena stopnia infiltracji materii organicznej i wybranych jonów na terenie plaż o zróżnicowanej antropopresji. (Assess the degree of infiltration of organic matter and selected ions in the beaches of various anthropogenic impact). Chromatogr. Jonowa, 2011, (in Polish).
  • Brown A.C., McLachlan A., 1990. Ecology of sandy shores. Elsevier, Amsterdam.
  • Buscail R., Pocklington R., Daumas R., Guidi L., 1990. Fluxes and budget of organic matter in the benthic boundary layer over the northwestern Mediterranean margin. Cont. Shelf Res., 10, 1089-1122.
  • Cividanes S., Incera M., Lopez J., 2002. Temporal variability in the biochemical composition of sedimentary organic matter in an intertidal flat of the Galician coast (NW Spain). Oceanol. Acta, 25, 1-12.
  • Covazzi Harriague A.C., Gaozza L., Montella A., Misic C., 2006. Benthic communities on a Ligurian beach (NW Mediterranean). Hydrobiol., 571, 383-394.
  • Craig D., Fallowfield J., Cromar N., 2002. Enumeration of faecal coliforms from recreational coastal sites: evaluation of techniques for the separation of bacteria from sediments. J. Appl. Microbiol., 93, 557-565.
  • Danovaro R., Dinet A., Duineveld G., Tselepides A., 1999b. Benthic response to particulate fluxes in different trophic environments: a comparison between the Gulf of Lions – Catalan sea (W Mediterranean) and the Cretan Sea (E-Mediterranean). Prog. Oceanogr., 44 (1), 287-312.
  • Danovaro R., Fabiano M., 1995. Sesonal and inter-annual variation of bacteria in seagrass bed of the Mediterranean Sea: relationship with labil organic compounds and other environmental factors. Aquatic Microbial Ecol., 9 (1), 17-26.
  • Danovaro R., Fabiano M., della Croce N., 1993. Labile organic matter and microbial biomasses in deep-sea sediments (Eastern Mediterranean Sea). Deep Sea Res., 40, 953-965.
  • Daumas R., Sautriot D., Calmet D., 1983. Evolution de constituants labiles de la matière organique dans les sediments profonds de diverses marges continentales. In: Géochimie organique des sédiments marins. D’Orgon à Misedor. (Evolution of labile constituents of organic matter in deep sediments of various continental margins. From Orgon to Misedor). (Ed.) C.N.R.S., Paris, 99-150, (in French).
  • Degraer S., Volckaert A., Vincx M., 2003. Macrobenthic zonation patterns along a morphodynamical continuum of macrotidal, low tide bar/rip and ultra-dissipative sandy beaches. Estuar. Coast. Shelf Sci. 56, 459-468.
  • DuBois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F., 1956. Colorimetric method for determination of sugars and related substances. Anal. Biochem., 28 (3), 350-356.
  • Edge T.A., Hill S., 2007. Multiple lines of evidence to identify the source of fecal pollution at a freshwater beach in Hamilton Harbour, Lake Ontario. Water Res., 41, 3585-3594.
  • Ellery W.N., Schleyer M.H., 1984. Comparison of homogenization and ultrasonication as techniques in extracting attached sedimentary bacteria. Mar. Ecol. Prog. Ser., 15, 247-250.
  • Fabiano M., Danovaro R., 1994. Composition of organic matter in sediments facing a river estuary (Tyrrhenian Sea): relationships with bacteria and microphytobenthic biomass. Hydrobiol., 277, 71-84.
  • Fabiano M., Donovaro R., Fraschetti S., 1995. A three-year time series of elemental and biochemical composition of organic matter in subtidal sandy sediments of the Ligurian Sea (Northwestern Mediterraean). Cont. Shelf Res., 15 (11/12), 1453-1469.
  • Fabiano M., Manale D., Misic C., 2003. Bacteria and organic matter Turing a bioremediation treatment of organic – rich harbor sediments. Mar. Poll. Bull., 46 (9), 1164-1173.
  • Fabiano M., Marin V., Misic C., Moreno M.P., Salvo V.S., Vezzulli L., 2004. Sedimentary organic matter and bacterial community in microtidal mixed beaches of the Ligurian Sea (Northwestern Mediterraean). Chem. and ecol., 20, 423-435.
  • Farrington J.W., 1992. Marine Organic Geochemistry: Review and Challenges for the Future. Mar. Chem., 39 (1-3), 1-244.
  • Fichez R., 1991. Composition and fate of organic-matter in submarine cave sediments – implications for the biogeochemical cycle of organic-carbon. Oceanol. Acta, 14 (4), 369-377.
  • Handa N., Yanagi K., Matsunaga K., 1972. Distribution of detrital material in the Western Ocean and their biochemical nature. Memorie dell’Istituto Italiano di Idrobiologia, 29, 53-71.
  • Heymans J.J., McLachlan A., 1996. Carbon budget and network analysis of a high-energy beach/surf-zone ecosystem. Estuar. Coast. Shelf, S. 43 (4), 485-505.
  • Huettel M., Weslawski J.M., Massel S., Middelburg J., van Beusekom J., Glud R., Jaszewski J., Kellermann A., 2003. Coastal sands as biocatalytical filters (COSA). Coastline, 12 (1), 8-12.
  • Incera M., Cividanes S.P., Lastra M., Lopez J., 2003a. Temporal and spatial variability of sedimentary organic matter in sandy beaches on the northwest coast of Iberian Peninsula. Estuar. Coast. Shelf Sci., 585, 55-61.
  • Incera M., Cividanes S.P., Lastra M., Lopez J., 2003b. Role of hydrodynamic conditions on quantity and biochemical composition of sediment organic matter in sandy intertidal sediments (NW Atlantic coast, Iberian Peninsula). Hydrobiol., 497, 39-51.
  • Januszkiewicz T., 1978. Studia nad metodami analizy chemicznej składu współczesnych osadów dennych jezior. (Study on methods of chemical analyses of the composition of contemporary bottom sediments in lakes). Zesz. Nauk. ART, Olsztyn 8, 3-30, (in Polish).
  • Jędrzejczak M.F., 1999. The degradation of stranded carrion on a Baltic Sea sandy beach. Oceanol. Stud., 28 (3-4), 109-141.
  • Khiyama H.M., Makemson J.C., 1973. Sand beach bacteria: enumeration and characterization. Appl. Microbiol., 26 (3), 293-297.
  • Koop K., Griffiths C.L., 1982. The relative significance of bacteria, meio- and macrofauna on an exposed sandy beach. Mar. Biol., 66 (3), 295-300.
  • Krstulović N., Solić M., 1988. Distribution of proteolytic, amylolytic and lipolytic bacteria in the Kastela Bay. Acta Adriatica, 29, 75-82.
  • Mann K.H., 2000. Ecology of coastal waters. Blackwell Science Inc., London.
  • Maria T.F., Vanaverbeke J., Vanreusel A., Esteves A.M., 2016. Sandy Beaches: state of the art of nematode ecology. An Acad Brans Cienc., 88 (3), 1678-2690.
  • Markwell M.A.K., Hass S.M., Bieber L.L., Tolbert M.E., 1978. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem., 87 (1), 206-210.
  • Martinez J., Smith D.C., Steward D.F., Azam F., 1996. Variability in ectohydrolytic enzyme actives of pelagic marine bacteria and its significance for substrate processing in the sea. Aqua. Microbial Ecol., 10, 223-230.
  • McLachlan A., 1983. Water filtration by dissiptive beaches. Limnol. and Oceanogr., 34 (4), 774-780.
  • McLachlan A., Brown A., 2006. The ecology of sandy shores. Elsevier, South Africa.
  • McLachlan A., De Ruyck A., Hacking N., 1996. Community structure on sandy beaches: patterns of richness and zonation in relation to tide range and latitude. Revista Chilena de Historia Natural, 69, 451-467.
  • Meadows P.S., Anderson J.G., 1968. Microorganisms attache to marine sand grains. J. mar. biol. Ass. U.K., 48, 161-175.
  • Meyer-Reil L.A., 1986. Measurement of hydrologic activity and incorporation of dissolved organic substrates by microorganisms in marine sediments. Mar. Ecol. Progr. Ser., 31, 143-149.
  • Meyer-Reil L.A., 1991. Ecological aspect of enzymatic activity in marine sediments. In: Microbial Enzymes in Aquatic Environments. (Ed.) R.J. Chróst, Springer-Verlag, New York, 84-95.
  • Meyer-Reil L., Dawson R., Liebezeit G., Tiedge H., 1978. Fluctuation interactions of bacterial activity in sandy beach sediments and overlying waters. Mar. Biol., 48 (2), 161-171.
  • Misic C., Fabiano M., 2005. Enzymatic activity on sandy beaches of the Ligurian Sea (NW Mediterranean). Microb. Ecol., 49 (4), 513-522.
  • Mudryk Z., Donderski W., Skórczewski P., Walczak M., 1999. Neustonic and planktonic bacteria isolated from a brackish lake Gardno. Pol. Arch. Hydrobiol., 46, 121-129.
  • Mudryk Z., Podgórska B., 2006. Enzymatic Activity of Bacterial Strains Isolated from Marine Beach Sediments. Polish J. Environ. Stud., 15, 441-448.
  • Mudryk Z., Skórczewski P., 2004. Extracellular enzyme activity at the air – water inference of an estuarine lake. Estuar. Coast. Shelf Sci., 59, 59-67.
  • Mudryk Z., Skórczewski P., Perliński P., Wielgat M., 2011. Studies concerning heterotrophic bacteria decomposing macromolecular compounds at two marine beaches. Oceanol. Hydrobiol. Stud., 40, 74-83.
  • Myślińska E., 2001. Laboratoryjne badania gruntów. (Laboratory studies of soils). PWN, Warsaw, (in Polish).
  • Nair S., Bharathi P.A., 1980. Heterotrophic bacterial population in tropical sandy beaches. Mahasagar – Bull.Nat. Inst. Oceanogr., 13 (3), 261-267.
  • Novitsky J.A., MacSween M.C., 1989. Microbiology of a high energy beach sediment: evidence for an active and growing community. Mar. Ecol. Prog. Ser., 52, 71-75.
  • Oliff W.D., Gardner B., Turner W.D., Sharp J.B., 1970. The chemistry of the interstitial waters as a measure of conditions in a sandy beach. Water Res., 4, 179-188.
  • Paluch J., 1973. Mikrobiologia wód. (Microbiology of waters). PWN, Warszawa, (in Polish).
  • Phillips M.C., Solo-Gabriele H.M., Reniers A.J.H.M., Wang J.D., Kiger R.T., Abdel-Mottaleb N., 2011. Pore water transport of enterococci out of beach sediments. Mar. Pollut. Bull., 62 (11), 2293-2298.
  • Podgórska B., Mudryk Z., 2003. Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea sandy beach. Estuar. Coast. Shelf Sci., 56, 539-546.
  • Podgórska B., Mudryk Z., Skórczewski P., 2008. Abudance and production of bacteria in Marine Beach (Southern Baltic Sea). Polish J. Ecol., 56, 405-414.
  • Poremba K., 1995. Hydrolytic enzymatic activity in deep-sea sediments. Microbiol. Ecol., 16 (3), 213-222.
  • Porter K.G., Feig Y.S., 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25 (5), 943-948.
  • Pusceddu A., dell’Anno A., Fabiano M., 2000. Organic matter composition in coastal sediments at Terra Nova Bay (Ross Sea) during summer 1995. Polar Biol., 23, 288-293.
  • Pusceddu A., Sara G., Armeni M., Fabiano M., Mazzola A., 1999. Seasonal and spatial changes in the sediment organic matter of a semi-enclosed marine system (West Mediterranean Sea). Hydrobiol., 397, 59-70.
  • Rheinheimer G., 1977. Sewage levels and bacterial distribution in the west Baltic. Acta Hydrochim. Hydrobiol., 5, 473-480.
  • Robinson J.D., Mann K.H., Novitsky J.A., 1982. Conversion of the particulate fraction of seaweed detritus to bacterial biomass. Limnol. Oceanogr., 27 (6), 1072-1079.
  • Rodil I.F., Lastra M., Lopez J., 2007. Macroinfauna community structure and biochemical composition of sedimentary organic matter along a gradient of wave exposure in sandy beaches (NW Spain). Hydrobiol., 579, 301-316.
  • Rodil I.F., Lastra M., 2004. Environmental factors affecting benthic macrofauna along a gradient of intermediate sandy beaches in northern Spain. Estuar. Coast. Shelf Sci., 61(1), 37-44.
  • Rodríguez J.G., Lastra M., López J., 2003. Meiofauna distribution along a gradient of sandy beaches in northern Spain. Estuar. Coast. Shelf Sci., 58, 63-69.
  • Rowe G.T., Deming J., 1985. The role of bacteria in the turnover of organic carbon in deepsea sediments. J. Mar. Res., 43(4), 925-950.
  • Rush A., Heuttel M., Reimers C.E., Taghon G.L., Fuller Ch.M., 2003. Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sand. FEMS Microbiol. Ecol., 44, 89-100.
  • Sargent J.R., Hopkins C.C.E., Seiring J.V., Youngson A., 1983. Partial characterization of organic material in surface sediments from Balsfjorden, northern Norway, in relation to its origin and nutritional value for sediment-ingesting animals. Mar. Biol., 76 (1), 87-94.
  • Sato M.I., Bari M.D., Lamparelli C., Truzzi A.C., Coelho M.C., Hachich E.M., 2005. Sanitary quality of sands from marine recreational beaches of São Paulo Brazil. Braz. J. Microbiol., 23, 321-326.
  • Schlacher T.A., Schoeman D., Dugan J., Lastra M., Jones A., Scapini F., McLachlan A., 2008. Sandy beach ecosystems: key features, sampling issues, management challenges and climate changes impacts. Mar. Ecol., 29 (S), 70-89.
  • Schoeman D.S., McLachlan A., Dugan J.E., 2000. Lessons from disturbance experiment in the intertidal zone of an expose sandy beach. Estuar. Coast. Shelf Sci., 50 (6), 869-884.
  • Skórczewski P., Mudryk Z., Gackowska J., Perliński P., 2012. Abundance and distribution of fecal indicator bacteria in recreational beach sand in the southern Baltic Sea. Rev. de Biol. Mar. y Oceanogr., 47 (3), 503-512.
  • Trojanowski J., Bigus K., Antonowicz J., 2014. The influence of anthropogenic factors on organic matter content changes in chosen beach ecosystems. Desalin. Water Treat., 52, 19-21.
  • Trojanowski J., Mudryk Z., Trojanowska C., Młynarkiewicz E., 2007. Zróżnicowanie parametrów chemicznych w plażach o odmiennej antropopresji. (Differentiation of chemical parameters in beaches with different anthropopression). Geol. i geomorfol., 7, 211-228, (in Polish).
  • Tylkowski J., Samołyk M., 2011. Zmienność przestrzenna powierzchniowych osadów plażowych brzegu morskiego wyspy Wolin. (Spatial variability of surface sediments of the beaches of the sea coast of Wolin Island). Bad. Fizjogr., 62, 151-163, (in Polish).
  • Unanue M., Ayo B., Agis M., Slezak D., Herndl G.J., Iriberri J., 1999. Ectoenzymatic activity and uptake of monomers in marine bacterioplankton described by a biphasic kinetic model. Microbial Ecol., 37, 36-48.
  • Weise W., Rheinheimer G., 1978. Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments. Microbial. Ecol., 4, 175-188.
  • Wilson J.O., Buchsbaum R., Valiela I., Swain T., 1986. Decomposition in salt marsh ecosystems: phenolic dynamics during decay of litter of Spartina alterniflora. Mar. Ecol. Progr. Ser., 29 (2), 177-187.
  • Yamamoto N., Lopez G., 1985. Bacterial abundance in relation to surface area and organic content of marine sediments. J. Exp. Mar. Biol. Ecol., 90, 209-220.
  • Zaitsev Y., 2012. A key role of sandy beaches in the marine environment. J. Black Sea/Mediterranean Environ., 18 (2), 114-127.
  • Zawadzka-Kahlau E., 1999. Tendencje rozwojowe polskich brzegów Bałtyku Południowego. (Development trends of the Polish shores of the South Baltic). IBW PAN, Gdańsk, (in Polish).
  • Zöllner K., Kirsch A., 1962. Über die quantitative bestimmung von lipoiden (mikromethode) mittels der vielen naturlichen lipoiden (allen bekannten plasmalipoiden) gemeinsamen sulfophosphovanillin-reaktion. (The quantitative determination of lipids (micromethod) by means of the sulfophospho-vanilin reaction common to many natural lipids (all plasma lipids). Zeitschrift für die Gesamte Experimentelle Medizin, 135, 545-561, (in German).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a42a15ba-34ea-4800-9651-2a93d437d348
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.