PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 14 |

Tytuł artykułu

Accumulation and retranslocation of nitrogen and phosphorus in the foliage of Pinus sylvestris L. and Betula pubescens in chosen woodland ecosystems of the Slovinski National Park

Treść / Zawartość

Warianty tytułu

PL
Akumilacja i retranslokacja azotu i fosforu w listowiu sosny zwyczajnej i brzozy omszonej w wybranych ekosystemach leśnych Słowińskiego Parku Narodowego

Języki publikacji

EN

Abstrakty

EN
The study of foliage was carried out in two different forest ecosystems: Vaccinio uliginosi- Betuletum pubescentis and Empetro nigri-Pinetum in the Slovinski National Park in the period of 2002-2005. The largest volume of nitrogen and phosphorus in the litter of coniferous needles was found in early summer at the moment of maximum growth. An average concentration of nitrogen in examined needles was between 1.296% and 1.358% N in Vaccinio uliginosi-Betuletum pubescentis and from 1.010% to 1.118% N in Empetro nigri-Pinetum. The decrease of biogenes concentration in plant tissues was observed in the autumn months as a result of lower demand and recession of biogenes connected with storage of valuable elements in the fatter parts of the trees. In the fall season, a gradual recession of nutrients from the litter of coniferous needles was observed. In Vaccinio uliginosi-Betuletum pubescentis insignificant quantity of nitrogen recesses (average 5.6%) from the new and one year old litter of coniferous needles, including 47.2% N-NH4 and 78.6% N-NO3 and about 21.8% P, including 11.7% P-PO4. In Empetro nigri-Pinetum more intensive recession of biogenes was found from the litter of coniferous needles of common pine than in Vaccinio uliginosi-Betuletum pubescentis. On average 11.5% T-N is translocated, including 41.4% N-NH4 and 23.8% N-NO3 as well as 22.3% P, including 11.8% P-PO4.
PL
Badania listowia prowadzono w dwóch rożnych ekosystemach leśnych: Vaccinio uliginosi- Betuletum pubescentis i Empetro nigri-Pinetum w Słowińskim Parku Narodowym w latach 2002-2005. Największe ilości azotu i fosforu w igliwiu stwierdzono wczesnym latem w czasie maksymalnego wzrostu. Średnia koncentracja azotu w badanym igliwiu mieściła się w przedziale od 1,296% do 1,358% N w Vaccinio uliginosi-Betuletum pubescentis oraz od 1,010% do 1,118% N w Empetro nigri-Pinetum. Obniżenie koncentracji biogenow w tkankach roślinnych obserwowano w miesiącach jesiennych jako wynik mniejszego zapotrzebowania na nie oraz wycofywania biogenów związanych z magazynowaniem cennych pierwiastków w grubszych częściach drzew. W okresie jesiennym zaobserwowano rownież stopniowe wycofywanie nutrientów z igliwia. W Vaccinio uliginosi-Betuletum pubescentis wycofywane są nieznaczne ilości azotu (średnio 5,6%) z igliwia nowego i jednorocznego, w tym 47,2% N-NH4 i 78,6% N-NO3 oraz około 21,8% P, w tym 11,7% P-PO4. W Empetro nigri- Pinetum stwierdzono silniejsze wycofywanie biogenów z igliwia sosny zwyczajnej niż w Vaccinio uliginosi-Betuletum pubescentis. Średnio retranslokacji ulega 11,5% T-N, w tym 41,4% N-NH4 i 23,8% N-NO3 oraz 22,3% P, w tym 11,8% P-PO4.

Wydawca

-

Rocznik

Tom

14

Opis fizyczny

p.57-74,fig.,ref.

Twórcy

autor
  • Environmental Chemistry Research Unit, Institute of Biology and Environmental Protection, Pomeranian University in Slupsk, Arciszewskiego 22b, 76-200 Slupsk, Poland
autor

Bibliografia

  • Andrews M., Sprent J.I., Raven J.A., Eady P.E., 1999. Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiences, Plant, Cell & Environment, 22, 8, 949-58.
  • Attiwill P.P., Adams M.A., 1993. Nutrient cycling in forests. New Phytologist, 124, 561-582.
  • Berg B., Hannus K., Popoff T., Theander D., 1982. Changes in organic chemical components of needle litter during decomposition. Long-term decomposition in Scots pine forest. Part I. Can. J. Bot., 60, 1310-1319.
  • Biały K., 1983. Wpływ mineralnego odŜywiania sosny pospolitej (Pinus silvestris L.) na jej wzrost w świetle analiz składu chemicznego igieł. (Influence of mineral nutrition of pine (Pinus silvestris L.) on its growth based on the analysis of chemical composition of needles). AUNC, Biologia, 29, 63, 129-178, (in Polish).
  • Chapin F.S. III, 1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233-260.
  • Chapin F.S. III, Kedrowski R.A., 1983. Seasonal changes of nitrogen and phosphorus fractions in autumn retranslocation in evergreen and deciduous Taiga trees. Ecology, 64, 2, 376-391.
  • Clark R.B., 1983. Plant genotype differences in the uptake, translocation, accumulation, and use of mineral elements required for plant growth. Plant Soil, 77, 175-196.
  • CMA del INEA, 1973. Determinaciones analiticas en suelo. Normalización de métodos I. pH, materia orgánica y nitrógeno. (Analytical deteminations of soils. Normalization of methods I. pH, organic matter and nitrogen). Anal Edafologia Agronómica, 32, 1153-117, (in Spanish).
  • De Vries W., Heij G.J., 1991. Critical loads and critical levels for the environmental effects of air pollutants. In: Acidification research in The Netherlands. Final report on the Dutch priority programme on acidification. (Eds) G.J. Heij, T. Schneider, Elsevier, 205-214.
  • Dziadowiec H., Kwiatkowska A., 1980. Mineralization and humification of plant fall in mixed forest stand of the reserve Las Piwicki near Toruń, Ekol. Pol., 28 (1), 111-128.
  • Dziadowiec H., Pokojska U., 1988. Phosphorus cycling in soils of forest ecosystems in Northern Poland. In: Phosphorus cycles in terrestrial and aquatic ecosystems. (Ed.) H. Tissen, SCOPE and the UNEP, 77-87.
  • Enwezor W.O., 1976. The mineralization of nitrogen and phosphorus in organic material of varying C:N and C:P ratios. Plant and Soil, 44 (1), 237-240.
  • Fife D.N., Nambiar E.K.S., 1982. Accumulation and retranslocation of mineral nutrients in developing needles in relation to seasonal growth of young Radiata Pine trees. Ann. Bot., 50, 817-829.
  • Fife D.N., Nambiar E.K.S., 1984. Movement of nutrients in Radiata Pine in relation to growth of shoots. Ann. Bot., 52, 303-314.
  • Gawliński S., 1991. Wpływ nawoŜenia mineralnego na wegetację i chemizm sosny zwyczajnej. (Influence of mineral fertilization on vegetation and chemism of pine). IOŚ, Warszawa, (in Polish).
  • Gifford R.M., 2000. Carbon contents of above-ground tissues of forest and woodland trees. National Carbon Accounting System Technical Report no 22. Australian Greenhouse Office, Canberra.
  • Güsewell S., 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
  • Güsewell S., Koerselman W., 2002. Variation in nitrogen and phosphorus concentrations of wetland plants, Perspect. Ecol. Evol. Syst., 5, 37-61.
  • Hansen K., 1996. In-canopy throughfall measurements of ion fluxes in Norway spruce. Atmos. Environ. 30, 23, 4065-4076.
  • Hawkins B.J., Kiiskila S.B.R., Henry G., 1999. Biomass and nutrient allocation in Douglasfir and amabilis fir seedlings: influence of growth rate and temperature. Tree Physiol., 19, 59-63.
  • Headley A.D., Callaghan T.V., Lee J.A., 1985. The phosphorus economy of the evergreen tundra plant, Lycopodium annotinum. Oikos, 45, 235-245.
  • Helmisaari, H., 1992. Nutrient retranslocation within the foliage of Pinus sylvestris. Tree Physiol., 10, 45-58.
  • Kabata-Pendias A., Pendias H., 1993. Biogeochemia pierwiastków śladowych. (Biogeochemistry of trace elements). PWN, Warszawa, (in Polish).
  • Konecka-Betley K., Czępińska-Kamińska D., Janowska E., 1999. Systematyka i kartografia gleb (Systematics and cartography of soil). SGGW, Warszawa, (in Polish).
  • Konieczka P., Namieśnik J., Zygmunt B., Bulska E., Świtaj-Zawadka A., Naganowska A., Kremer E., Rompa M., 2004. Quality assessment and quality control of analytical results – QA/QC. Centre of Excellence in Environment Analysis and Monitoring, Gdańsk.
  • Malik V., Timmer V.R., 1998. Biomass partitioning and nitrogen retranslocation in black spruce seedlings on competitive mixedwood sites: a bioassay study. Can. J. For. Res., 28, 206-215.
  • Malzahn E., 2002. Igły sosny zwyczajnej jako bioindykator zagroŜeń środowiska leśnego Puszczy Białowieskiej. (Pinus needles as a bioindicator of forest environment danger in BiałowieŜa Primeval Forest). Biul. Monit. Przyr., 1(3), 19-31 (in Polish).
  • Małachowska J., Wawrzyniak J., Kluziński L., Hildebrand R., Plucia M., Wójcik J., 2006. Monitoring lasów. Ocena stanu zdrowotnego lasów w latach 1995-2005, (Monitoring of forests. Evaluation of the health state of forests in 1995-2005). Bibl. Monit. Środ., Warszawa, (in Polish).
  • Matuszkiewicz J.M., 2002. Zespoły leśne Polski. (Polish forests complexes). PWN, Warszawa, (in Polish).
  • McGroddy M.E., Daufresne T., Hedin L.D., 2004. Scaling of C:N:P stechiometry in forests worldwide: implications of terrestrial redfield – type ratios. Ecol. Soc. Am., 85(9), 2390-2401.
  • Millard P., 1996. Ecophysiology of the internal cycling of nitrogen for tree growth. Z. Pflanzenernaehr. Bodenkd., 159, 1-10.
  • Miller H.G., 1984. Dynamics of nutrient cycling in plantation ecosystems. In: Wood for energy. The implications for harvesting, utilization, and marketing. (Ed.) J.R. Aldous, Inst. of Chartered Foresters, Edinburgh, England, 137-146.
  • Miller H.G., Cooper J.M., Miller J.D., 1976. Effect of nitrogen supply on nutrient in litter fall and crown leaching in a stand of Corsican pine. J. Appl. Ecol., 13, 233-256.
  • Munson A.D., Margolis H.A., Brand D.G., 1995. Seasonal nutrient dynamics in white pine and white spruce in response to environmental manipulation. Tree Physiol., 15, 141-149.
  • Nambiar E.K.S., Fife D.N., 1987. Growth and nutrient retranslocation in needles of radiate pine in relation to nitrogen suplly. Ann. Bot., 60, 147-156.
  • Nambiar E.K.S., Fife D.N., 1991. Nutrient retranslocation in temperate conifers. Tree Physiol., 9, 185-207.
  • Ostrowska A., Porębska G., 2002. Skład chemiczny roślin, jego interpretacja i wykorzystanie w ochronie środowiska. (Chemical composition of plants, its interpretation and use in environment protection). Inst. Ochr. Środ., Warszawa, (in Polish).
  • Ostrowska A., Gawliński S., Szczubiałka Z., 1991. Metody analizy i oceny właściwości gleb i roślin. (Methods of analysis and evaluation of soil and plants properties). Inst. Ochr. Środ., Warszawa, (in Polish).
  • Parzych A., 2008. Dynamika koncentracji związków azotu i fosforu w dwóch odmiennych ekosystemach leśnych Słowińskiego Parku Narodowego. (Dynamics concentration of nitrogen and phosphorus compounds in two different forest ecosystems in the Slovinski National Park). MS thesis, AP, Słupsk, (in Polish).
  • Parzych A., Astel A., Trojanowski J., 2008. Fluxes of biogenic substances in precipitation and througfall in woodland ecosystems of the Słowiński National Park. Arch. Environ. Prot., 34 (2), 13-24.
  • Pastor J., Aber J.D., McClaugherty C.A., Melillo J.M., 1984. Above-ground production and N and P cycling along a nitrogen mineralisation gradient on Blackhawn Island, Wisconsin. Ecology, 65, 256-268.
  • Plan ochrony Słowińskiego Parku Narodowego. Operat Ochrony Ekosystemów Leśnych na lata 2002-2021. T. 8: Opis ogólny. T. 9.1: Opis taksacyjny lasu – Obręb Lądowy Oddziały 1-63. (Slovinski National Park protection plan, 2003. Forest ecosystems protection procedures for the period between 2002 and 2021. Vol. 7 General description, Vol. 9.1 Taxonomical forest description – Land Compound, Units 1-63). Jeleniogórskie Biuro Planowania i Projektowania, (in Polish).
  • Polkowska ś., Astel A., Grynkiewicz M., Górecki T., Namieśnik J., 2002. Studies on intercorrelation between ions co-occuring in precipitation in the Gdańsk-Sopot-Gdynia Tricity (Poland). J. Atmos. Chem., 41, 239-264.
  • Prescott C.E., Corbin I.P., Parkinson D., 1992. Availability of nitrogen and phosphorus in the forest floor of Rocky Mountain coniferous forests, Can. J. For. Res., 22, 593-600.
  • Puchalski T., Prusinkiewicz Z., 1975. Ekologiczne podstawy siedlikoznawstwa leśnego. (Ecological basics of the forest habitat). PWRiL, Warszawa, (in Polish).
  • Pugnaire F.I., 2001. Variability of inorganic nutrient concentrations in leaves. New Phytologist, 150, 499-507.
  • Pugnaire F.I, Chapin F.S. III., 1993. Controls over nutrient resorption from leaves of evergreen mediterranean species. Ecology, 74, 124-129.
  • Rapp M., M.C.L. Lecterc, P. Lossaint., 1979. The nitrogen economy in Pinus pinea L. stand. For. Ecol. Manage., 2, 221-231.
  • Raven J.A., Handley L.L., Andrews M., 2004. Global aspects of C/N interactions determining plant-environment interactions. J. Exp. Bot., 55, 11-25.
  • Regina S.I., Tarazona T., 2001. Nutrient cycling in a natural beech forest and adjacent planted pine in northern Spain. Forestry, 74(1), 11-28.
  • Salifu K.F., Timmer V.R., 2001. Nutrient retranslocation response of Picea mariana seedlings to nitrogen supply. Soil Sci. Soc. Am. J., 65(3), 905-913.
  • Saur E., Nambiar E.K.S., Fife D.N., 2000. Foliar nutrient retranslocation in Eucalyptus `globulus. Tree Physiol., 20, 1105-1112.
  • Schachtman D.P., Reid R.J., Ayling S.M., 1998. Phosphorus Uptake by Plants: from Soil to Cell. Plant Physiol., 116, 447-453.
  • Stachurski A., Zimka J.R., 1981. The patterns of nutrient cycling in forest ecosystems. Bull. Acad. Pol. Sci., II, 29, 141-147.
  • Stachurski A., Zimka J.R., 1992. Evaluation of consumption, assimilation, production and respiration of folivores in forest ecosystems, calculated by methods of balancing productivity parameters of phosphorus and nitrogen. Ekol. Pol., 40, 527-551.
  • Starck Z., 2006. RóŜnorodne funkcje węgla i azotu w roślinach. (Various functions of carbon and nitrogen in plants). Kosmos, 55, 2-3(271-272), 243-257, (in Polish).
  • Szczubiałka Z., 1981. Zawartość azotu i składników mineralnych w igłach jako podstawa ceny stanu zaopatrzenia sosny zwyczajnej (Pinus silvestris L.) w składniki pokarmowe. (Nitrogen and mineral elements content in pinus needles as base of evaluation of Pinus silvestris L. supply in nutrients). MS thesis, Inst. Bad. Leśn., Warszawa, (in Polish).
  • Townsend A.R., Cleveland C.C., Asner G.P., Bustamante M.M.C., 2006. Controls over foliar N:P ratios in tropical rain forest. Ecology, Abstract, 107-118.
  • Van den Burg J., 1990. Foliar analysis for determination of tree nutrient status – a compilation of literature data. 2. Literature 1985-1989. ”De Dorschkamp”, Institute for Forestry and Urban Ecology. Wageningen, The Netherlands, Rapport 591.
  • Wachowska-Serwatka K., Marczonek A., 1968. Azot i składniki mineralne w liściach drzew i roślin zielnych w rezerwacie Leśna Woda. (Nitrogen and mineral elements in tree leaves and herbaceous in nature reserve of Leśna Woda). Acta Univ. Wrat. 64, Prace Bot., 109-128, (in Polish).
  • Walna B., Polkowska ś., Małek S., Mędrzycka K., Namieśnik J., Siepak J., 2003. Tendencies of Change in the Chemistry of Precipitation at Tree Monitoring Stations 1996-1999. Pol. J. Environ. Stud., 12, 4, 467-472.
  • Wang G.G., Klinka K., 1997. White spruce foliar nutrient concentrations in relation to tree growth and soil nutrients amounts. For. Ecol. Manage., 98, 89-99.
  • Xue L.I., Luo S., 2002. Seasonal changes in the nutrient concentrations of leaves and leaf litter in young Cryptomeria japonica Stand, Scand. J. For. Res., 17, 495-500.
  • Zhiguo X., Baixing Y., He Y., Changchum S., 2007. Nutrient limitation and wetland botanical diversity in northeast China: can fertilization influence on species richness?. Soil Science, 172(1), 86-93.
  • Zimka J.R., 1989. Analysis of processes of element transfer in forest ecosystems. Pol. Ecol. Stud., 15, 3-4, 135-212.
  • Zimka J.R., Stachurski A., 1980. The role of nutrient translocation and leaching on chemical composition of falling leaves in the box-alder Acer negundo L. Bull. Acad. Pol. Sci., II, 27, 835-844.
  • Zimka J.R., Stachurski A, 1992. Intensity of retranslocation of macro- and microelement from ageing foliage of deciduous forest vegetation. Ekol. Pol., 40, 333-351.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a417c513-e7d5-46bc-9a95-ef724a885ac5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.