EN
A half-century of forest inventory research involving statistically-valid fieldmeasurements (using statistically representative sample size and showing confidence limits) and well-validated forecasting methods are reviewed in this paper. Some current procedures overestimate global and large-scale forest biomass, carbonstorage, and carbon sequestering rates because they are based on statistically-invalid methods (errors in estimates are unavailable and unreported), or they fail to consider key dynamic characteristics of forests. It is sometimes assumed that old-growth forests can serve as fixed, steady-state storage of biomass and carbon for indefinitely long periods, but it is shown by both modelling and remote sensing that forests are dynamic systems, the state of which can change considerably over as shorta time as a decade. Forecasting methods show that maximum biomass and carbon storage in some important forest types occurs in mid-succession, not in old-growth. It is proposed, therefore, that realistic biomass and carbon storage estimates used for carbon credits and offsets be determined as the statistical mean minus the confidence interval and that practical carbon sequestering programs include specific timeframes, not indefinitely long periods of time.