PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 22 | Special Issue S1 |

Tytuł artykułu

Assessing the accuracy of SRTM DEM and ASTER GDEM datasets for the coastal zone of Shandong Province, Eastern China

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study assessed the performance of recently released 3 arc second SRTM DEM version 4.1 by CSI-CGIAR and 1 arc second ASTER GDEM version 1 and version 2 by METI-NASA in comparison with ground control points from 1:50000 digital line graphs for the coastal zone of Shandong Province, Easter China. The vertical accuracy of SRTM DEM is 13.74 m root mean square error (RMSE), and GDEM version 1 reaches 24.11 m RMSE. Version 2 of ASTER GDEM shows better performance than version 1 and SRTM DEM with a RMSE of 12.12 m. A strong correlation of the magnitude of elevation error with slope and elevation is identified, with lager error magnitudes in the steeper slopes and higher elevations. Taking into account slope and elevation has the potential to considerably improve the accuracy of the SRTM DEM and GDEM version 1 products. However, this improvement for GDEM version 2 can be negligible due to their limited explanatory power for the DEM elevation errors

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Opis fizyczny

p.15-20,fig.,ref.

Twórcy

autor
  • Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
autor
  • Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
autor
  • College of Population, Resources and Environment, Shandong Normal University, Jinan 250014, China

Bibliografia

  • 1. Andersson, J.O. Nyberg, L., Using official map data on topography, wetlands and vegetation cover for prediction of stream water chemistry in boreal headwater catchments, Hydrology and Earth System Science, Vol.13, pp. 537–549, 2009.
  • 2. ASTER GDEM Validation Team, ASTER global DEM validation summary report. METI & NASA, 28pp, 2009.
  • 3. ASTER GDEM Validation Team, ASTER global DEM validation summary report. METI & NASA, 25pp, 2011
  • 4. Berry, P. A. M., Garlick, J. D., Smith, R. G., Near-global validation of the SRTM DEM using satellite radar altimetry, Remote Sensing of Environment, Vol. 106, pp. 17–27, 2007.
  • 5. Gorokhovich, Y., Voustianiouk, A., Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics, Remote Sensing of Environment, Vol. 104, pp. 409–415, 2006.
  • 6. Guo, H., Jiao, W., Yang, Y., Liu, G., Systematic error of the 1985 National Height Datum, Geomatics and Information Science of Wuhan University, Vol. 29, pp.715–719, 2004.
  • 7. Hirt, C., Filmer, M. S., Featherstone, W. E., Comparison and validation of the recent freely available ASTERGDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia, Australia Journal of Earth Sciences, Vol. 57, pp. 337–347, 2010.
  • 8. Jarvis, A., Reuter, H. I., Neson, A., Guevara, E., Hole-filled SRTM for the globe Version 4, Available from the CGIARSXI SRTM 90m database: http://srtm.csi.cgiar.org, 2008.
  • 9. Jarvis, A., Rubiano, J., Nelson, A., Farrow, A., Mulligan, M., Practical use of SRTM data in the tropics – Comparisons with digital elevation models generated from cartographic data, Working Document No. 198. Cali, International Centre for Tropical Agriculture (CIAT): 32 pp, 2004.
  • 10. Kääb, A., Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya, Remote Sensing of Environment, Vol. 94, pp. 463–474, 2005.
  • 11. Lin, S., Jing, C., Chaplot, V., Yu, X., Zhang, Z., Moore, N., Wu, J., Effect of DEM resolution on SWAT outputs of runoff, sediment and nutrients, Hydrology and Earth System Science Discussion, Vol. 7, pp. 4411–4435, 2010.
  • 12. Mouratidis, A., Briole, P., Katsambalos, K., SRTM 3˝ DEM (versions 1, 2, 3, 4) validation by means of extensive kinematic GPS measurements: a case study from North Greece, International Journal of Remote Sensing, Vol. 31, pp. 6205–6222, 2010.
  • 13. Nicholls, R. J., Cazenave, A., Sea-level rise and its impact on coastal zones, Science, Vol. 328, pp.1517–1519, 2010.
  • 14. Peduzzi1, P., Herold, C., Silverio, W., Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru), The Cryosphere, Vol. 4, pp. 313–323, 2010.
  • 15. Rabus, B., Eineder, M., Roth, A., Bamler, R., The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 57, pp. 241−262, 2003.
  • 16. Rahmstorf S., A new view on sea level rise, Nature Reports: Climate Change, Vol. 4, pp. 44–45, 2010.
  • 17. Rodriguez, E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M., Daffer,W., Hensley S., An assessment of the SRTM topographic products, Technical Report JPL D-31639. Pasadena, California: Jet Propulsion Laboratory 143 pp, 2005.
  • 18. Sharma, B. D., Clevers, J., De Graaf, R., Chapagain, N. R., Assessing the land cover situation in Surkhang, Upper Mustang, Nepal, using an ASTER image, Him. J. Sci., Vol. 1, pp. 93-98, 2003.
  • 19. Shortridge, A., Messina, J., Spatial structure and landscape associations of SRTM error, Remote Sensing Environment, Vol. 115, pp.1576–1587, 2011.
  • 20. State Bureau of Technical Supervision: Specifications for aerophotogrammetric office operation of 1:25000, 1:50000, 1:100000 topographic maps, Beijing: Standards Press of China, 2008.
  • 21. Suna, G., Ransonb, K. J., Kharukc, V. I., Kovacsd, K., Validation of surface height from shuttle radar topography mission using shuttle laser altimeter, Remote Sensing Environment, Vol. 88, pp. 401–411, 2003.
  • 22. Toutin T., Impact of terrain slope and aspect on radargrammetric DEM accuracy, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 57, pp. 228– 240, 2002.
  • 23. US Geological Survey, SRTM Water Body Data Set, Web document. http://edc.usgs.gov/products/elevation/swbd. html (accessed 28.July 2009), 2003.
  • 24. [24] Wang, J. X., Wang, J., Lu, C. P., Problem of coordinate transformation between WGS-84 and BEIJING 54, Journal of Geodesy and Geodynamics, Vol. 23, pp. 70–73, 2003. (In Chinese)
  • 25. Wang, Y., Hou, S., Masson-Delmotte, V., Jouzel, J., A generate additive model for the spatial distribution of stable isotopic composition in Antarctic surface snow, Chemical Geology, Vol. 271, pp.133–141, 2010.
  • 26. Wang, Y., Hou, S., Spatial distribution of 10m firn temperature in the Antarctic Ice Sheet, Science in China: Earth Science, Vol. 54, pp. 655–666, 2011.
  • 27. Wang, Y, Hou, S., Liu, Y., Glacier change in the Karlik Mountain, Eastern Tien Shan during 1971/72-2001/02 using remote sensing data and GIS technology, Annals of Glaciology, Vol. 50, pp.39–45, 2009.
  • 28. Wechsler, S. P., Uncertainties associated with digital elevation models for hydrologic applications: a review, Hydrology and Earth System Science, Vol. 11, pp.1481– 1500, 2007.
  • 29. Zhai, Z., Wei, Z., Wu, F., Ren, H., Computation of vertical deviation of Chinese height datum from geoid by using EGM 2008 model, Journal of Geodesy and Geodynamics, Vol. 31, pp.116–118, 2011. (In Chinese)
  • 30. Zhao, S., Cheng, W., Zhou, C., Chen, X., Zhang, S., Zhou, Z., Liu, H., and Chai, H., Accuracy assessment of the ASTER GDEM and SRTM3 DEM: an example in the Loess Plateau and North China Plain of China, International Journal of Remote Sensing, Vol. 32, pp. 8081–8093, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a1a86c55-4193-4d0e-91ba-0d01e7d94759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.