PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Removing humic acid from aqueous solution using titanium dioxide: a review

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Recently, the photocatalytic degradation technique with titanium dioxide (TiO₂) has been widely applied for the degradation of humic acid (HA) from aqueous solution due to its ability to achieve complete mineralization of organic contaminants. Because TiO₂ is the most commonly used semiconductor photocatalyst, efforts on the modification of TiO₂ in order to improve catalyst efficiency were presented in this review manuscript. The key photoreactor operation parameters such as TiO₂ loading, pH, temperature, oxygen concentration, concentration and nature of HA, light wavelength, light intensity, the presence of inorganic ions and mechanistic pathway for pollutant removal, and the formation of the intermediates and their effects on the mineralization and disinfection of the photo-process were also assessed. Although we can see an increase in the number of papers that have been published in this area, further progress is needed to improve the understanding of the dynamic interactions between TiO₂ photocatalytic oxidation process and HA, as well as to suggest possible future developments in this promising field.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.529-542,ref.

Twórcy

autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, P.R. China
  • Vietnam Maritime University, Haiphong, Vietnam
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, P.R. China
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China

Bibliografia

  • 1. MATILAINEN A., VEPSALAINEN M., SILLANPAA M. Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science 159, 189, 2010.
  • 2. MAGHSOODLOO SH., NOROOZI B., HAGHI A.K., SORIAL G.A. Consequence of chitosan treating on the adsorption of humic acid by granular activated carbon. Journal of Hazardous Materials 191, 380, 2011.
  • 3. BHATNAGAR A., SILLANPAA M. Removal of natural organic matter (NOM) and its constituents from water by adsorption - A review. Chemosphere 166, 497, 2017.
  • 4. FENG Q.Y., LI X.D., CHENG Y.J., MENG L., MENG Q.J. Removal of Humic Acid from Groundwater by Electrocoagulation. Journal of China University of Mining and Technology 17 (4), 513, 2007.
  • 5. HASSAN K., BIJIAN B., JAVAD K. Evaluation of UV/TiO₂ Photo-Catalytic process for removing humic compounds from water. Polish Journal of Environmental Studies 24 (3), 1063, 2015.
  • 6. YANG S., HU J., CHEN C., SHAO D., WANG X. Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environmental Science and Technology 45 (8), 3621, 2011.
  • 7. LIU H., HU C., ZHAO H., QU J. Coagulation of humic acid by PACl with high content of Al₁₃: The role of aluminum speciation. Separation and Purification Technology 70, 225, 2009.
  • 8. DUAN J., CAO X., CHEN C., SHI D., LI G., MULCAHY D., Effects of Ca(OH)₂ assisted aluminum sulfate coagulation on the removal of humic acid and the formation potentials of tri-halomethanes and haloacetic acids in chlorination. Journal of Environmental Sciences (China) 24, 1609, 2012.
  • 9. SUDOH R., ISLAM M.S., SAZAWA K., OKAZAKI T., HATA N., TAGUCHI S., KURAMINTZ H. Removal of dissolved humic acid from water by coagulation method using polyaluminum chloride (PAC) with calcium carbonate as neutralizer and coagulant aid. Journal of Environmental Chemical Engineering 3 (2), 770, 2015.
  • 10. BEN-SASSON M., ZIDON Y., CALVO R., ADIN A. Enhanced removal of natural organic matter by hybrid process of electrocoagulation and dead-end microfiltration. Chemical Engineering Journal. 232, 338, 2013.
  • 11. GHERNAOUT D., MARICHE A., GHERNAOUT B., KELLIL A. Electromagnetic treatment doubled electrocoagulation of humic acid in continuous mode using response surface method for its optimisation and application on two surface waters. Desalin. Water Treat. 22, 311, 2010.
  • 12. LABANOWSKI J., PALLIER V., FEUILLADE-CATHALIFAUD G. Study of organic matter during coagulation and electrocoagulation processes: Application to a stabilized landfill leachate. J. Hazard. Mater. 179, 166, 2010.
  • 13. VEPSALAIINEN M., PULLIAINEN M., SILLANPAA M. Effect of electrochemical cell structure on natural organic matter (NOM) removal from surface water through electrocoagulation (EC). Sep. Purif. Technol. 99, 20, 2012.
  • 14. ULU F., BARISCI S., KOBYA M., SARKKA H., SILLANPAA M. Removal of humic substances by electrocoagulation (EC) process and characterization of floc size growth mechanism under optimum conditions. Separation and Purification Technology 133, 246, 2014.
  • 15. GHERNAOUT D., IRKI S., BOUCHERIT A. Removal of Cu²⁺ and Cd²⁺, and humic acid and phenol by electrocoagulation using iron electrodes. Desalin. Water Treat. 52, 3256, 2014.
  • 16. LIAO A.A., SPITZER M., MOTHEO A.J., BERTAZZOLI R. Electrocombustion of humic acid and removal of algae from aqueous solutions. J. Appl. Electrochem. 38, 721, 2008.
  • 17. WANG J.N., LI A.M., ZHOU Y., XU L. Study on the influence of humic acid of different molecular weight on basic ion exchange resin’s adsorption capacity. Chinese Chemical Letters 20, 1478, 2009.
  • 18. TEOW Y.H., OOI B.S., AHMAD A.L. Study on PVDF-TiO₂ mixed-matrix membrane behaviour towards humic acid adsorption. Journal of Water Process Engineering 15, 99, 2015.
  • 19. SZYMANSKI K., MORAWSKI A.W., MOZIA S. Humic acids removal in a photocatalytic membrane reactor with a ceramic UF membrane, Chemical Engineering Journal. 305, 19, 2016.
  • 20. RAO G., ZHANG Q., ZHAO H., CHEN J., LI Y. Novel titanium dioxide/iron(III)oxide/graphene oxide photocatalytic membrane for enhanced humic acid removal from water. Chemical Engineering Journal 302, 633, 2016.
  • 21. RAUTHULA M.S., SRIVASTAVA V.C. Studies on adsorption/desorption of nitrobenzene and humic acid onto/from activated carbon. Chemical Engineering Journal 168, 35, 2011.
  • 22. WANG J., BI L., JI Y., MA H., YIN X. Removal of humic acid from aqueous solution by magnetically separable polyaniline: Adsorption behavior and mechanism. Journal of Colloid and Interface Science 430, 140, 2014.
  • 23. WANG J., ZHOU Y., LI A., XU L. Adsorption of humic acid by bi-functional resin JN-10 and the effect of alkali-earth metal ions on the adsorption. Journal of Hazardous Materials 176, 1018, 2010.
  • 24. TANG Y., LIANG S., YU S., GAO N., ZHANG J., GUO H., WANG Y. Enhanced adsorption of humic acid on amine functionalized magnetic mesoporous composite microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects 406, 61, 2012.
  • 25. TAO Q., XU Z., WANG J., LIU F., WAN H., ZHENG S. Adsorption of humic acid to aminopropyl functionalized SBA-15. Microporous and Mesoporous Materials 131, 177, 2010.
  • 26. PARK S., YOON T. I. The effects of iron species and mineral particles on advanced oxidation processes for the removal of humic acids. Desalination 208, 181, 2007.
  • 27. LIU X., FITZPATRICK C.S.B. Removal of humic substances using solar irradiation followed by granular activated carbon adsorption. Water Science and Technology: Water Supply, 10 (1), 15, 2010.
  • 28. U.S. ENVIRONMENTAL PROTECTION AGENCY. Handbook advanced photochemical oxidation processes. BiblioGov: Columbus, Ohio, 10, 2012.
  • 29. BIBI I., NAZAR N., IQBAL M., KAMAL S., NAWAZ H., NOUREN S., SAFA Y., JILANI K., SULTAN M., ATA S., REHMAN F., ABBAS M. Green and eco-friendly synthesis of cobalt-oxide nanoparticle: Characterization and photo-catalytic activity. Advanced Powder Technology 28 (9), 2035, 2017.
  • 30. HOZALSKI R.M., BOUWER E.J., GOEL S. Removal of natural organic matter (NOM) from drinking water supplies by ozone-biofiltration. Water Sci Technol. 40, 157, 1999.
  • 31. WEI M.C, WANG K. S., HSIAO T.E., LIN I.C., WU H.J., WU Y.L., LIU P.H., CHANG S.H. Effects of UV irradiation on humic acid removal by ozonation, Fenton and Fe⁰/air treatment: THMFP and biotoxicity evaluation. Journal of Hazardous Materials 195, 324, 2011.
  • 32. OSKOEI V., DEHGHANI M.H., NAZMARA S., HEIBATI B., ASIF M., TYAGI I., AGARWAL S., GUPTA V.K. Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption. Journal of Molecular Liquids 213, 374, 2016.
  • 33. IQBAL M., ABBAS M., ARSHAD M., HUSSANIN T., KHAN A.U., MASOOD N., TAHIR M.A., HUSSAIN S.M., BOKHARI T.H., KHERA R.A. Gamma radiation treatment for reducing cytotoxicity and mutagenicity in industrial wastewater. Polish Journal of Environmental Studies, 24 (6), 2745, 2015.
  • 34. IQBAL M., BHATTI I.A. Gamma radiation/H₂O₂ treatment of a nonylphenol ethoxylates: Degradation, cytotoxicity, and mutagenicity evaluation. Journal of Hazardous Materials, 299, 351, 2015
  • 35. IQBAL M., NISAR J., ADIL M., ABBAS M., RIAZ M., TAHIR M.A., YOUNUS M., SHAHID M. mutagenicity and cytotoxicity evaluation of photo-catalytically treated petroleum refinery wastewater using an array of bioassays. Chemosphere 168, 590, 2017.
  • 36. RAJCA M., BODZEK M. Kinetics of fulvic and humic acids photodegradation in water solutions. Separation and Purification Technology 120, 35, 2013.
  • 37. NAKATA K., FUJISHIMA A. TiO₂ photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 169, 2012.
  • 38. ZHOU W., SUN F., PAN K., TIAN G., JIANG B., REN Z., TIAN C., FU H. Well-ordered large-pore mesoporous anatase TiO₂ with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv. Funct. Mater. 21, 1922, 2011.
  • 39. FENOLL J., FLORES P., HELLIN P., MARTINEZ C.M., NAVARRO S. 2012. Photodegradation of eight miscellaneous pesticides in drinking water after treatment with semiconductor materials under sunlight at pilot plant scale. Chem. Eng. J. 204-206, 54, 2012.
  • 40. KANAKARAJU D., MOTTI C.A., GLASS B.D., OELGEMOLLER M. TiO₂ photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates. Chemosphere 139, 579, 2015.
  • 41. ZHANG L., XING Z., ZHANG H., LI Z., WU X., ZHANG X., ZHANG Y., ZHOU W. High thermostable ordered mesoporous SiO₂–TiO₂ coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance. Appl. Catal. B Environ. 180, 521, 2016.
  • 42. CHAO-YIN K., YA-HUI Y. Exploring the photodegradation of Bisphenol A in a sunlight/ Immobilized N-TiO₂ System. Polish Journal of Environmental Studies 23 (2), 379, 2014.
  • 43. VALENCIA S., MARIN J.M., RESTREPO G., FRIMMEL F.H. Evaluations of the TiO₂/simulated solar UV degradations of XAD fractions of natural organic matter from a bog lake using size-exclusion chromatography. Water Res. 47 (14), 5130, 2013.
  • 44. LAOUFI N.A., HOUT S., TASSALIT D., OUNNAR A., DJOUADI A., CHEKIR N., BENTAHAR F. Removal of a Persistent Pharmaceutical Micropollutant by UV/TiO₂ Process Using an Immobilized Titanium Dioxide Catalyst: Parametric Study. Chemical Engineering Transactions 32, 1951, 2013.
  • 45. CZECH B. Effect of H₂O₂ addition on phenol removal from wastewater using TiO₂/Al₂O₃ as photocatalyst. Polish Journal of Environmental Studies 18 (6), 989, 2009.
  • 46. ZMUDZINSKI W. Removal of o-cresol from water by adsorption photocatalysis. Polish Journal of Environmental Studies 19 (6), 1353, 2010.
  • 47. YAP P.S., LIM T.T., LIM M., SRINIVASAN M. Synthesis and characterization of nitrogen-doped TiO₂/AC composite for the adsorption-photocatalytic degradation of aqueous bisphenol - A using solar light. Catalysis Today 151, 8, 2010.
  • 48. KIM C., KIM J.T., KIM K.S., JEONG S., KIM H.Y., HAN Y.S. Immobilization of TiO₂ on an ITO substrate to facilitate the photoelectrochemical degradation of an organic dye pollutant. Electrochimica Acta. 54, 5715, 2009.
  • 49. BAEK M.H., JUNG W.C., YOON J.W., HONG J.S., LEE Y.S., SUH J.K. Preparation, characterization and photocatalytic activity evaluation of micro and mesoporous TiO₂/spherical activated carbon. Journal of Industrial and Engineering Chemistry 19, 469, 2013.
  • 50. PORTJANSKAJA E., STEPANOVA K., KLAUSON D., PREIS S. The influence of titanium dioxide modifications on photocatalytic oxidation of lignin and humic acids. Catalysis Today. 144, 26, 2009.
  • 51. WANG X., WU Z., WANG Y., WANG W., WANG X., BU Y., ZHAO J. Adsorption-photodegradation of humic acid in water by using ZnO coupled TiO₂/bamboo charcoal under visible light irradiation. Journal of Hazardous Materials 262, 16, 2013.
  • 52. XUE G., LIU H., CHEN Q., HILLS C., TYRER M., INNOCENT F. Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO₂/activated carbon composites. Journal of Hazardous Materials 186, 765, 2011.
  • 53. MORI M., SUGITA T., MASE A., FUNATOGAWA T., KIKUCHI M., AIZAWA K., KATO S., SAITO Y., ITO T., ITABASHI H. Photodecomposition of humic acid and natural organic matter in swamp water using a TiO₂-coated ceramic foam filter: Potential for the formation of disinfection byproducts. Chemosphere 90, 1359, 2013.
  • 54. ZHANG X., JIANHONG A., LEE P., DELAI D., LECKIE J.O. TiO₂ nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. Journal of Membrane Science 313, 44, 2008.
  • 55. DAELS N., RADOICIC M., RADETIC M., DE CLERCK K., VAN HULLE S.W.H. Electrospun nanofibre membranes functionalised with TiO₂ nanoparticles: Evaluation of humic acid and bacterial removal from polluted water. Separation and Purification Technology 149, 488, 2015.
  • 56. PATSIOS S.I., SARASIDIS V.C., KARABELAS A.J. A hybrid photocatalysis – ultrafiltration continuous process for humic acids degradation. Separation and Purification Technology 104, 333, 2013.
  • 57. MA N., ZHANG Y., QUAN X, FAN X., ZHAO H. Performing a microfiltration integrated with photocatalysis using an Ag-TiO₂/HAP/Al₂O₃ composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties. Water Research 44, 6104, 2010.
  • 58. BIRBEN N.C., UYGUNER-DEMIREL C.S., KAVURMACI S.S., GURKAN Y.Y., TURKTEN N., CINAR Z., BEKBOLE M. Application of Fe-doped TiO₂ specimens for the solar photocatalytic degradation of humic acid. Catalysis Today 281, 78, 2017.
  • 59. LAZAU C., RATIU C., ORHA C., PODE R., MANEA F. Photocatalytic activity of undoped and Ag-doped TiO₂-supported zeolite for humic acid degradation and mineralization. Materials Research Bulletin 46, 1916, 2011.
  • 60. RASHID S.G., GONDAL M.A., HAMEED A., ASLAM M., DASTAGEER M.A., YAMANI Z.H., ANJUM D. H. Synthesis, characterization and visible light photocatalytic activity of Cr³⁺, Ce³⁺ and N co-doped TiO₂ for the degradation of humic acid. RSC Adv. 5, 32323, 2015.
  • 61. PINHEDO L., PELEGRINI R., BERTAZZOLI R., MOTHEO A.J. Photoelectrochemical degradation of humic acid on a (TiO₂)₀.₇(RuO₂)₀.₃ dimensionally stable anode. Applied Catalysis B: Environmental 57, 75, 2005.
  • 62. SELCUK H., BEKBOLE M. Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO₂ coated photoanode. Chemosphere 73, 854, 2008.
  • 63. PAOLA A.D., GARCIA-LOPEZ E., MARCI G., PALMISANO L. A survey of photocatalytic materials for environmental remediation. Journal of Hazardous Materials 211-212, 3, 2012.
  • 64. FRENCH R.A., JACOBSON A.R., KIM B., ISLEY S.L., PENN R.L., BAVEYE P.C. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol. 43, 1354, 2009.
  • 65. MOZIA S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Separation and Purification Technology 73, 71, 2010.
  • 66. IBHADON A., FITZPATRICK P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 3, 189, 2013.
  • 67. LIU J., BAI H., WANG Y., LIU Z., ZHANG X., SUN D.D. Self-assembling TiO₂ nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater. 20, 4175, 2010.
  • 68. XU C., CUI A., XU Y., FU X. Graphene oxide-TiO₂ composite filtration membranes and their potential application for water purification. Carbon 62, 465, 2013.
  • 69. SELCUK H., BEKBOLE M. Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO₂ coated photoanode. Chemosphere 73, 854, 2008.
  • 70. LI A., ZHAO X., LIU H., QU J. Characteristic transformation of humic acid during photoelectrocatalysis process and its subsequent disinfection byproduct formation potential. Water Research 45, 6131, 2011.
  • 71. PANSAMMUT G., CHARINPANITKUL T., SURIYAWONG A. Removal of Humic Acid by Photocatalytic Process: Effect of Light Intensity. Engineering Journal 17 (3), 25, 2013.
  • 72. CHONG M.N., JIN B., CHOW C.W.K., SAINT C. Recent developments in photocatalytic water treatment technology: A review. Water research 44, 2997, 2010.
  • 73. UMAR M., AZIZ H.A. Photocatalytic Degradation of Organic Pollutants in Water, in: Organic Pollutants, Monitoring, Risk and Treatment, (Rashed, M. N., (Eds.)), InTechOpen Publisher, 195, 2013 http://dx.doi.org/10.5772/53690
  • 74. GAYA U.I., ABDULLAH A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 9, 1, 2008.
  • 75. UYGUNER C.S., BEKBOLE M. A comparative study on the photocatalytic degradation of humic substances of various origins. Desalination 176, 167, 2005.
  • 76. BIRBEN C., BEKBOLE M. Key role of common anions on the photocatalytic degradation profiles of the molecular size fractions of humic acids. Catalysis Today 209, 122, 2013.
  • 77. LUTTRELL T., HALPEGAMAGE S., TAO J., KRAMER A., SUTTER E., BATZILL M. Why is anatase a better photocatalyst TiO₂ films. Sci. Rep. 4, 4043, 1, 2014.
  • 78. HAQUE M.M., BAHNEMANN D., MUNEER M. Photocatalytic Degradation of Organic Pollutants: Mechanisms and Kinetics, in: Organic Pollutants Ten Years after the Stockholm Convention – Environmental and Analytical Update, 293, 2012.
  • 79. ZHANG X., PAN J.H., DU A.J., FU W., SUN D.D., LECKIE J.O. Combination of one-dimensional TiO₂ nanowire photocatalytic oxidation with microfiltration for water treatment. Water Research 43, 1179, 2009.
  • 80. PAZ Y. Preferential photodegradation - Why and how?. C. R. Chimie. 9, 774, 2006.
  • 81. PALMER F.L., EGGINS B.R., COLEMAN H.M. The effect of operational parameters on the photocatalytic degradation of humic acid. Journal of Photochemistry and Photobiology A: Chemistry 148, 137, 2002.
  • 82. KONSTANTINOU I.K., ALBANIS T.A. TiO₂ - assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - A review. Applied Catalysis B: Environmental 49, 1, 2004.
  • 83. LIU S., LIM M., FABRIS R., CHOW C., CHIANG K., DRIKAS M., AMAL R. Removal of humic acid using TiO₂ photocatalytic process - Fractionation and molecular weight characterisation studies. Chemosphere 72, 263, 2008.
  • 84. WANG P.F, QI N., AO Y.H., HOU J., WANG C., QIAN J. Effect of UV irradiation on the aggregation of TiO₂ in an aquatic environment: Influence of humic acid and pH. Environmental Pollution 212, 178, 2016.
  • 85. DZIEDZIC J., WODKA D., NOWAK P., WARSZYNSKI P., SIMON C., KUMAKIRI I. Photocatalytic degradation of the humic species as a method of their removal from water - comparison of UV and artificial sunlight irradiation. Physicochemical Problems of Mineral Processing 45, 15, 2010.
  • 86. REHMAN S., ULLAH R., BUTT A.M., GOHAR N.D. Strategies of making TiO₂ and ZnO visible light active. Journal of Hazardous Materials 170, 560, 2009.
  • 87. CHONG M.N., LEI S., JIN B., SAINT C., CHOW C.W.K. Optimisation of an annular photoreactor process for degradation of Congo Red using a newly synthesized titaniaim pregnated kaolinite nano-photocatalyst. Separation and Purification Technology 67, 355, 2009.
  • 88. CHONG M.N., JIN B., ZHU H.Y., CHOW C.W.K., SAINT C. Application of H-titanate nanofibers for degradation of Congo Red in an annular slurry photoreactor. Chemical Engineering Journal 150, 49, 2009.
  • 89. YIGIT Z., INAN H. A study of the photocatalytic oxidation of humic acid on anatase and mixed-phase anatase – rutile TiO₂ nanoparticles. Water Air Soil Pollut: Focus 9, 237,2009.
  • 90. ERHAYEM M., SOHN M. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles. Science of the Total Environment 471, 92, 2014.
  • 91. LI X.Z., FAN C.M., SUN Y.P. Enhancement of photocatalytic oxidation of humic acid in TiO₂ suspensions by increasing cation strength. Chemosphere 48, 453, 2002.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a0f80ccf-cfb1-4b3a-bba5-7fcedaa1f866
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.