PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 3 |

Tytuł artykułu

Statistical relationship between selected physicochemical properties of peaty-muck soils and their fraction of humic acids

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Influence of humic acids on soil environment is still subject of scientific discussions. The aim of above studies was to investigate the relationships between selected physicochemical properties of eleven peaty-muck soils and properties of humic acids isolated from these soils. The following parameters were determined for soils: total and organic carbon, density, ash, humifi- cation, and the water absorption index. Humic acids were described by: absorbance at 280 nm, absorbance ratios at 465 and 665 nm, at 260 and 665 nm, elemental composition and atomic ratios: H/C, O/H, O/C, C/N, the degree of internal oxidation, and the content of carboxylic and phenolic groups. Statistical analyses showed that an increase in density, humification, and water absorption indices of soils caused a significant increase in the humic acid parameters: absorbance at 280 nm, the oxygen content, O/H, O/C ratios, inter- nal oxidation degree, and functional groups. Statistically signifi- cant negative correlations were found for the same parameters of soils and for the hydrogen and carbon content as well as the H/C ratio of humic acids. The relationships showed that there was a pos- sibility to express the properties of humic acids on the basis of more simple parameters measured for soil and without time-consuming isolation of humic acids.

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.269-278,fig.,ref.

Twórcy

autor
  • Institute of Agrophysics, Polish Academy of Sciences in Lublin, Doswiadczalna 4, 20-290 Lublin, Poland
  • Institute of Agrophysics, Polish Academy of Sciences in Lublin, Doswiadczalna 4, 20-290 Lublin, Poland

Bibliografia

  • Arancon N.Q., Edwards C.A., Lee S., and Byrne R., 2006. Effects of humic acids from vermicomposts on plant growth. European J. Soil Biol., 42, 65-69.
  • Asing J., Wong N.C., and Lau S., 2009. Optimization of extraction method and characterization of humic acid derived from coals and composts. J. Trop. Agric. and Fd. Sc., 37(2), 211-223.
  • Boguta P. and Sokołowska Z., 2012. Influence of phosphate ions on buffer capacity of soil humic acids. Int. Agrophys., 26, 7-14.
  • Bronstein L.M., Huang X., Retrum J., Schmucker A., Pink M., Stein B.D., and Dragnea B., 2007. Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem. Mater., 19, 3624-3632.
  • Chin Y.P.,Aiken G., and O'Loughlin E., 1994.Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol., 28, 1853-1858.
  • Dziadowiec H., 1990. Determination of functional groups in humic acids by Dragunowa and Kucharenko methods. In: Methodical Guide for Studies of Soil Organic Matter (in Polish). Scientific Commission of Polish Soil Society Press, Warsaw, Poland.
  • Garcia-Gil J.C., Ceppi S.B., Velasco M.I., Polo A., and Senesi N., 2004. Long-term effects of amendment with municipal solid waste compost on the elemental and acidic functional group composition and pH-buffer capacity of soil humic acids. Geoderma, 121, 135-142.
  • Gawlik J., 1992. Water holding capacity of peat formations as an index of the state of their secondary transformation. Polish J. Soil Sci., 2, 121-126.
  • Inisheva L.I. and Dement’eva T.V., 1998. Mineralization rate of organic matter in peats. Eurasian Soil Sci., 33(2), 170-176.
  • Keller J.K., White J.R., Bridgham S.D., and Pastor J., 2004. Climate change effects on carbon and nitrogen mineralization in peatlands through changes in soil quality. Global Change Biol., 10, 1053-1064.
  • Klavins M., Sire J., Purmalis O., and Melecis V., 2008. Approachesto estimating humification indicators for peat. Mires Peat, 3(7), 1-7, http://www.mires-and-peat.net/volumes/map03/map0307.php
  • Kononowa M.M., 1966. Soil Organic Matter: its nature, its role in soil formation and in soil fertility. Pergamon Press, Oxford, UK.
  • Kumada K., 1987. Chemistry of soil organic matter. Japan Scientific Soci. Press, Tokyo, Japan.
  • Matyka-Sarzyńska D. and Sokołowska Z., 2004. Usefulness of humification number in studies of the state of secondary transformation as comparison to water holding capacity of mucks. Acta Agrophysica, 106, 553-563.
  • Okruszko H.,1976. Discernment and division of hydrogenic soils in relations to reclamation necessity (in Polish). Bibl. Wiad. IMUZ, 52, 7-54.
  • Pertusatti J. and Prado A.G.S., 2007. Buffer capacity of humic acid: Thermodynamic approach. J. Colloid Interface Sci., 314, 484-489.
  • Piccolo A., 2002. The supramolecular structure of humic substances. Anovel understanding of humus chemistry and application in soil science. Advances Agronomy, 75, 57-133.
  • Polak J. and Sułkowski W.W., 2006. Influence of the Treatment Process on Nitrogen Content in Humic Acids Extracted from Sewage Sludge. Polish J. Environ. Stud., 15(4), 573-577.
  • Pospíšilová L., Fasurová N., Baranèíková G., and Liptaj T., 2008. Spectral characteristics of humic acids isolated from South Moravian lignite and soils. Petroleum Coal, 50(2), 30-36.
  • Sakellariadou F., 2006. Spectroscopic studies of humic acids from subsurface sediment samples collected across the Aegean Sea. Mediterranean Marine Sci., 7(2), 11-17.
  • Sapek A. and Sapek B., 1997. Methods of chemical analyses of organic soils. Instruction materials, 115, 10.
  • Schlichting E., Blume H.P., and Stahr K., 1995. Bodenkundliches Praktikum, Blackwell Wissenschafts Press, Berlin- Wien.
  • Sokolowska Z. and Boguta P., 2010. State of the dissolved organic matter in the presence of phosphates. In: Chemical, Physical and Biological Processes Occurring in Soils (Eds L.W. Szajdak, A.K. Karabanov). Prodruk Press, Poznań, Poland.
  • Sokolowska Z., Szajdak L., and Boguta P., 2011. Effect of phosphates on dissolved organic matter release from peatmuck soils. Int. Agrophys., 25, 173-180.
  • Swift R.S., 1996. Organic matter characterization. In: Methods of Soil Analysis, Chemical Methods (Eds D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, M.E. Sumner). Soil Sci. Soc. Am. Press, Madison, WI, USA.
  • Szajdak L., Sokołowska Z., and Boguta P., 2012. Kinetics of dissolved organic matter released from peat-moorsh soils of various degree of secondary transformation. Necessity Peatlands Protection, 353-366.
  • Szajdak L., Warchulska P., and Sokołowska Z., 2009. Effect of pH on the release of organic matter from mucks. Wiestnik Tomsk State Pedagogical University Bulletin, 3(81), 105-109.
  • Tan H.K., 2000. Environmental Soil Science. CRC Press, Dekker Press, New York, USA.
  • Uyguner S.C. and Bekbolet M., 2005. Evaluation of humic acid photocatalytic degradation by UV-VIS and fluorescence spectroscopy. Catalysis Today, 101, 267-274.
  • Van Krevelen D.W., 1950. Graphical-statistical method for investigation of the structure of coal. Fuel, 26, 269-284.
  • Zbytniewski R. and Buszewski B., 2005. Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties. Bioresource Technol., 96, 471-478.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a067e42e-63fd-44bf-bcd5-abcd2f6c466f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.