PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 11 |

Tytuł artykułu

Copper phytoextraction with willow (Salix viminalis L.) under various Ca/Mg ratios. Part 1. Copper accumulation and plant morphology changes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This work reports a part of hydroponic experiment results concerning changes in Salix viminalis L. cv. ‘Cannabina’ morphology and physiology under stress conditions with different copper concentration levels and verifies our earlier results about the role of different Ca/Mg ratios in trace elements’ accumulation efficiency. In this part, we present the copper accumulation and changes in willow biomass. Concentration of copper in roots, rods, shoots and leaves was analyzed with flame atomic absorption spectrometry. Selected indices characterizing copper accumulation and plant biomass structure were calculated to estimate the potential of willow to remove metal from polluted solution. Our results indicate a general increase of copper accumulation by selected willow organs with increase of copper concentration in modified Knop’s medium. Moreover, significant differences in copper phytoextraction between plants under different Ca/Mg ratios were affirmed (1:10[4:1[20:1[1:1/4).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

11

Opis fizyczny

p.3251-3259,fig.,ref.

Twórcy

autor
  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
autor
  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
autor
  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
autor
  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
  • Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 55, 60-637 Poznan, Poland

Bibliografia

  • Abhilash PC, Yunus M (2011) Can we use biomass produced from phytoremediation? Biomass Bioenerg 35:1371–1372. doi:10. 1016/j.biombioe.2010.12.013
  • Ait Ali N, Bernal MP, Ater M (2004) Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquat Bot 80:163–176. doi:10.1016/j.aquabot.2004.08.008
  • Aksorn E, Chitsomboon B (2013) The Effects of Plant Growth Promoting Traits on Heavy Metal Uptake of Vetiver Grasss. American-Eurasian J Agric Environ Sci 13:465–470
  • Barabasz A, Krämer U, Hanikenne M, Rudzka J, Antosiewicz DM (2010) Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply. J Exp Bot 61:3057–3067. doi:10.1093/jxb/erq129
  • Benzarti S, Mohri S, Ono Y (2008) Plant response to trace element toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (Ecotype Ganges) and nonaccumulator plants: lettuce, radish, and alfalfa. Environ Toxicol 23:607–616. doi:10.1002/tox.20405
  • Borghi M, Tognetti R, Monteforti G, Sebastiani L (2007) Responses of Populus 9 euramericana (P. deltoides 9 P. nigra) clone Addato increasing copper concentrations. Environ Exp Bot 61:66–73. doi:10.1016/j.envexpbot.2007.03.001
  • Borghi M, Tognetti R, Monteforti G, Sebastiani L (2008) Responses of two poplar species (Populus alba and Populus 9 canadensis) to high copper concentrations. Environ Exp Bot 62:290–299. doi:10.1016/j.envexpbot.2007.10.001
  • Bouazizi H, Jouili H, Geitmann A, El Ferjani E (2010) Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicol Environ Saf 73:1304–1308. doi:10.1016/j.ecoenv.2010.05.014
  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362. doi:10.1016/S1360-1385(98)01283-7
  • Dos Santos Utmazian MN, Wieshammer G, Vega R, Wenzel WW (2007) Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut 148:155–165. doi:10.1016/j.envpol.2006.10.045
  • Fargašová A, Beinrohr E (1998) Metal-metal interactions in accumulation of V5+, Ni2+, Mo6+, Mn2+ and Cu2+ in under- and above-ground parts of Sinapis alba. Chemosphere 36:1305–1317. doi:10.1016/S0045-6535(97)00375-5
  • Gabos MB, de Abreu CA, Coscione AR (2009) EDTA assisted phytoremediation of Pb contaminated soil: metal leaching and uptake by Jack Beans. Scientia Agricola (Piracicaba, Brazil) 66:506-514. doi:10.1590/S0103-90162009000400012
  • Guala SD, Vega FA, Covelo EF (2011) Development of a model to select plants with optimum metal phytoextraction potential. Environ Sci Pollut Res Int 18:997–1003. doi:10.1007/s11356-011-0456-x
  • Haynes RJ (1990) Active ion uptake and maintenance of cation-anion balance: a critical examination of their role in regulating rhizosphere pH. Plant Soil 126:247–264. doi:10.1007/BF00012828
  • Hernández-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40. doi:10.1016/j.envpol.2007.06.002
  • Juang KW, Lai HY, Chen BC (2011) Coupling bioaccumulation and phytotoxicity to predict copper removal by switchgrass grown hydroponically. Ecotoxicol 20:827–835
  • Kabata-Pendias A, Pendias H (1999) Biogeochemia pierwiastków śladowych. Biogeochemistry of trace elements, 3rd edn. Wyd. Naukowe PWN, Warsaw (in Polish)
  • Kärenlampi S, Schat H, Vangronsveld J, Verkleij JAC, van der Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soil. Environ Pollut 107:225–231. doi:10.1016/S0269-7491(99)00141-4
  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with trace elements. Biotechnol Adv 28:61–69. doi:10.1016/j.biotechadv.2009.09.002
  • Ke W, Xiong ZT, Chen S, Chen J (2007) Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicas populations from a copper mine and an uncontaminated field sites. Environ Exp Bot 59:59–67. doi:10.1016/j.envexpbot.2005.10.007
  • Kim SH, Lee IS (2010) Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of elements from a multimetal contaminated soil. Bull Environ Contam Toxicol 84:255–259. doi:10.1007/s00128-009-9888-0
  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810. doi:10.1016/j.biotechadv.2009.06.003
  • Kuzovkina YA, Volk TA (2009) The characterization of willow (Salix L.) varieties for use in ecological engineering applications: co-ordination of structure, function and autecology. Ecol Eng 35:1178–1189. doi:10.1016/j.ecoleng.2009.03.010
  • Leštan D, Luo CL, Li XD (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13. doi:10.1016/j.envpol.2007.11.015
  • Liang HM, Lin TH, Chiou JM, Yeh KC (2009) Model evaluation of the phytoextraction potential of trace element hyperaccumulators and non-hyperaccumulators. Environ Pollut 157:1945–1952. doi:10.1016/j.envpol.2008.11.052
  • Magdziak Z, Kozlowska M, Kaczmarek Z, Mleczek M, Chadzinikolau T, Golinski P, Drzewiecka K (2011) Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere. Ecotoxicol Environ Saf 74:33–40. doi:10.1016/j.ecoenv.2010.09.003
  • Maiti SK, Jaiswal S (2008) Bioaccumulation and translocation of elements in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India. Environ Monit Assess 136:355–370. doi:10.1007/s10661-007-9691-5
  • Mal TK, Adorjan P, Corbett AL (2002) Effect of copper on growth of an aquatic macrophyte, Elodea canadensis. Environ Pollut 120:307–311. doi:10.1016/S0269-7491(02)00146-X
  • Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K, Strazynska K, Stachowiak A (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenerg 34:1410–1418. doi:10.1016/j.biombioe.2010.04.012
  • Mleczek M, Kozłowska M, Kaczmarek Z, Magdziak Z, Golinski P (2011a) Cadmium and lead uptake by Salix viminalis under modified Ca/Mg ratio. Ecotoxicol 20:158–165. doi:10.1007/s10646-010-0567-z
  • Mleczek M, Kozlowska M, Kaczmarek Z, Chadzinikolau T, Magdziak Z, Golinski P (2011b) Influence of Ca/Mg on phytoextraction properties of Salix viminalis. I. The effectiveness of Cd, Cu, Pb and Zn bioaccumulation and plant growth. Int J Phytorem 14:75–88. doi:10.1080/15226514.2011.573824
  • Mohanty M, Patra HK (2011) Attenuation of chromium toxicity in mine waste water using water hyacinth. J Stress Physiol Biochem 7(4):335–346. doi:10.1007/978-1-4419-7615-4_1
  • Nair A, Juwarkar AA, Devotta S (2008) Study of speciation of elements in an industrial sludge and evaluation of metal chelators for their removal. J Hazard Mater 152:545–553. doi:10.1016/j.jhazmat.2007.07.054
  • PN-ISO 10390:1997 Soil quality. Determination of pH
  • PN-ISO 1265 + AC1: 1997 Soil quality. Determination of electrolytic conduction Punniyamurthy T, Rout L (2008) Recent advances in coppercatalyzed oxidation of organic compounds. Coord Chem Rev 252:134–154. doi:10.1016/j.ccr.2007.04.003
  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominics V (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Exp 59:75–86. doi:10.1016/S0375-6742(97)00010-1
  • Safari Sinegani AA, Khalilikhah F (2011) The effect of application time of mobilising agents on growth and phytoextraction of lead by Brassica napus from a calcareous mine soil. Environ Chem Lett 9:259–265. doi:10.1007/s10311-010-0275-1
  • Sahi SV, Israr M, Srivastava AK, Gardea-Torresdey JL, Parsons JG (2007) Accumulation, speciation and cellular localization of copper in Sesbania drummondii. Chemosphere 67:2257–2266. doi:10.1016/j.chemosphere.2006.12.006
  • Scrase-Field SAMG, Knight MR (2003) Calcium: just a chemical switch? Curr Opin Plant Biol 6:500–506. doi:10.1016/S1369-5266(03)00091-8
  • Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of elements from soils: how far from practice? Environ Pollut 150:34–40. doi:10.1016/j.envpol.2007.05.024
  • Walker DJ, Bernal MP (2003) The effects of copper and lead on growth and zinc accumulation of Thlaspi caerulescens J. and C. Presl: implications for phytoremediation of contaminated soils. Water Air Soil Pollut 151:361–372. doi:10.1023/B:WATE.0000009901.89000.40
  • Wang X, Wang Y, Mahmood Q, Islam E, Jin X, Li T, Yang X, Liu D (2009) The effect of EDDS addition on the phytoextraction efficiency from Pb contaminated soil by Sedum alfredii Hance. J Hazard Mater 168:530–535. doi:10.1016/j.jhazmat.2009.02.074
  • Weatherall A, Proea MF, Craig J, Cameron AD, McKay HM, Midwood AJ (2006) Tracing N, K, Mg and Ca released from decomposing biomass to new tree growth. Part II: a model system simulating root decomposition on clearfell sites. Biomass Bioenerg 30:1060–1066. doi:10.1016/j.biombioe.2005.12.016
  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511. doi:10.1093/aob/mcg164
  • Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80:623–633. doi:10.1111/j.1469-8137.1978.tb01595.x
  • Wójcik P (1998) Odzywianie się roślin wyższych wapniem. Calcium nutrition of higher plants. Wiadomości Botaniczne 42:41–52 (in Polish)

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9dcd2f60-ef06-4ae2-b61a-4ed689bd4350
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.