PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 3 |

Tytuł artykułu

Cannabinoid receptor activation inhibits cell cycle progression by modulating 14-3-3beta

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cannabinoids display various pharmacological activities, including tumor regression, anti-inflammatory and neuroprotective effects. To investigate the molecular mechanisms underlying the pharmacological effects of cannabinoids, we used a yeast two-hybrid system to screen a mouse brain cDNA library for proteins interacting with type 1 cannabinoid receptor (CB1R). Using the intracellular loop 3 of CB1R as bait, we identified 14-3-3β as an interacting partner of CB1R and confirmed their interaction using affinity-binding assays. 14-3-3β has been reported to induce a cell cycle delay at the G2/M phase. We tested the effects of cannabinoids on cell cycle progression in HeLa cells synchronized using a double-thymidine block-and-release protocol and found an increase in the population of G2/M phase cells. We further found that CB1R activation augmented the interaction of 14-3-3β with Wee1 and Cdc25B, and promoted phosphorylation of Cdc2 at Tyr-15. These results suggest that cannabinoids induce cell cycle delay at the G2/M phase by activating 14-3-3β.

Wydawca

-

Rocznik

Tom

19

Numer

3

Opis fizyczny

p.347-360,fig.,ref.

Twórcy

autor
  • Department of Life Science, Kyonggi University, Suwon 443-760, Republic of Korea
autor
  • Department of Life Science, Kyonggi University, Suwon 443-760, Republic of Korea
autor
  • Department of Life Science, Kyonggi University, Suwon 443-760, Republic of Korea

Bibliografia

  • 1. Aguado, T., Romero, E., Monory, K., Palazuelos, J., Sendtner, M., Marsicano, G., Lutz, B., Guzmán, M. and Galve-Roperh, I. The CB1 cannabinoid receptor mediates excitotoxicity-induced neural progenitor proliferation and neurogenesis. J. Biol. Chem. 282 (2007) 23892–23898.
  • 2. Pan, H.L., Wu, Z.Z., Zhou, H.Y., Chen, S.R., Zhang, H.M. and Li, D.P. Modulation of pain transmission by G protein-coupled receptors. Pharmacol. Ther. 117 (2008) 141–161.
  • 3. Won, J.H., Park, J.S., Ju, H.H., Kim, S., Suh-Kim, H. and Ghil, S.H. The alpha subunit of Go interacts with promyelocytic leukemia zinc finger protein and modulates its functions. Cell. Signal. 20 (2008) 884–891.
  • 4. Park, J.M., Xian, X.S., Choi, M.G., Park, H., Cho, Y.K., Lee, I.S., Kim, S.W. and Chung, I.S. Antiproliferative mechanism of a cannabinoid agonist by cell cycle arrest in human gastric cancer cells. J. Cell. Biochem. 112 (2011) 1192–1205.
  • 5. Hernán Pérez de la Ossa, D., Lorente, M., Gil-Alegre, M.E., Torres, S., García-Taboada, E., Aberturas Mdel, R., Molpeceres, J., Velasco, G. and Torres-Suárez, A.I. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme. PLoS One 8 (2013) e54795.
  • 6. Nabissi, M., Morelli, M.B., Santoni, M. and Santoni, G. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis 34 (2013) 48–57.
  • 7. Morelli, M.B., Offidani, M., Alesiani, F., Discepoli, G., Liberati, S., Olivieri, A., Santoni, M., Santoni, G., Leoni, P. and Nabissi, M. The effects of cannabidiol and its synergism with bortezomib in multiple myeloma cell lines. A role for transient receptor potential vanilloid type-2. Int. J. Cancer 134 (2014) 2534–2546.
  • 8. Rocha, F.C., Dos Santos Junior, J.G., Stefano, S.C. and da Silveira, D.X. Systematic review of the literature on clinical and experimental trials on the antitumor effects of cannabinoids in gliomas. J. Neurooncol. 116 (2014) 11–24.
  • 9. Matsuda, L.A., Lolait, S.J., Brownstein, M.J., Young, A.C. and Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346 (1990) 561–564.
  • 10. Kaminski, N.E., Abood, M.E., Kessler, F.K., Martin, B.R. and Schatz, A.R. Identification of a functionally relevant cannabinoid receptor on mouse spleen cells that is involved in cannabinoid-mediated immune modulation. Mol. Pharmacol. 42 (1992) 736–742.
  • 11. Munro, S., Thomas, K.L. and Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365 (1993) 61–65.
  • 12. Bouaboula, M., Poinot-Chazel, C., Marchand, J., Canat, X., Bourrié, B., Rinaldi-Carmona, M., Calandra, B., Le Fur, G. and Casellas, P. Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. Eur. J. Biochem. 237 (1996) 704–711.
  • 13. Starowicz, K., Nigam, S. and Di Marzo, V. Biochemistry and pharmacology of endovanilloids. Pharmacol. Ther. 114 (2007) 13–33.
  • 14. Gasperi, V., Fezza, F., Pasquariello, N., Bari, M., Oddi, S., Agro, A.F. and Maccarrone, M. Endocannabinoids in adipocytes during differentiation and their role in glucose uptake. Cell. Mol. Life Sci. 64 (2007) 219–229.
  • 15. Lauckner, J.E., Jensen, J.B., Chen, H.Y., Lu, H.C., Hille, B. and Mackie, K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc. Natl. Acad. Sci. USA 105 (2008) 2699–2704.
  • 16. O’Sullivan, S.E. and Kendall, D.A. Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology 215 (2010) 611–616.
  • 17. Simcocks, A.C., O'Keefe, L., Jenkin, K.A., Mathai, M.L., Hryciw, D.H. and McAinch, A.J. A potential role for GPR55 in the regulation of energy homeostasis. Drug Discov. Today (2013) in press. DOI: 10.1016/j.drudis.2013.12.009.
  • 18. Bockaert, J., Fagni, L., Dumuis, A. and Marin, P. GPCR interacting proteins (GIP). Pharmacol. Ther. 103 (2004) 203–221.
  • 19. Bockaert, J., Perroy, J., Bécamel, C., Marin, P. and Fagni, L. GPCR interacting proteins (GIPs) in the nervous system: Roles in physiology and pathologies. Annu. Rev. Pharmacol. Toxicol. 50 (2010) 89–109.
  • 20. Maurice, P., Guillaume, J.L., Benleulmi-Chaachoua, A., Daulat, A.M., Kamal, M. and Jockers, R. GPCR-interacting proteins, major players of GPCR function. Adv. Pharmacol. 62 (2011) 349–380.
  • 21. Nurse, P. Universal control mechanism regulating onset of M-phase. Nature 344 (1990) 503–508.
  • 22. Peng, C.Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S. and PiwnicaWorms, H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277 (1997) 1501–1505.
  • 23. Jin, P., Gu, Y. and Morgan, D.O. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell. Biol. 134 (1996) 963–970.
  • 24. Sluchanko, N.N. and Gusev, N.B. Oligomeric structure of 14-3-3 protein: what do we know about monomers? FEBS Lett. 586 (2012) 4249–4256.
  • 25. Wang, Y., Jacobs, C., Hook, K.E., Duan, H., Booher, R.N. and Sun, Y. Binding of 14-3-3beta to the carboxyl terminus of Wee1 increases Wee1 stability, kinase activity, and G2-M cell population. Cell Growth Differ. 11 (2000) 211–219.
  • 26. Shao, H. and Andres, D.A. A novel RalGEF-like protein, RGL3, as a candidate effector for rit and Ras. J. Biol. Chem. 275 (2000) 26914–26924.
  • 27. Graves, P.R., Lovly, C.M., Uy, G.L. and Piwnica-Worms, H. Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene 20 (2001) 1839–1851.
  • 28. Lorenz, V.N., Schön, M.P. and Seitz, C.S. c-Rel downregulation affects cell cycle progression of human keratinocytes. J. Invest. Dermatol. 134 (2014) 415–422.
  • 29. Shen, J., Liu, X., Yu, W.M., Liu, J., Nibbelink, M.G., Guo, C., Finkel, T. and Qu, C.K. A critical role of mitochondrial phosphatase Ptpmt1 in embryogenesis reveals a mitochondrial metabolic stress-induced differentiation checkpoint in embryonic stem cells. Mol. Cell. Biol. 31 (2011) 4902–4916.
  • 30. Parker, L.L., Sylvestre, P.J., Byrnes, M.J. 3rd, Liu, F. and Piwnica-Worms, H. Identification of a 95-kDa WEE1-like tyrosine kinase in HeLa cells. Proc. Natl. Acad. Sci. USA 92 (1995) 9638–9642.
  • 31. Kumagai, A., Yakowec, P.S. and Dunphy, W.G. 14-3-3 proteins act as negative regulators of the mitotic inducer Cdc25 in Xenopus egg extracts. Mol. Biol. Cell. 9 (1998) 345–354.
  • 32. Blasina, A., de Weyer, I.V., Laus, M.C., Luyten, W.H., Parker, A.E. and McGowan, C.H. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr. Biol. 9 (1999) 1–10.
  • 33. Parker, L.L. and Piwnica-Worms, H. Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257 (1992) 1955–1957.
  • 34. McGowan, C.H. and Russell, P. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J. 12 (1993) 75–85.
  • 35. Mils, V., Baldin, V., Goubin, F., Pinta, I., Papin, C., Waye, M., Eychene, A. and Ducommun, B. Specific interaction between 14-3-3 isoforms and the human CDC25B phosphatase. Oncogene 19 (2000) 1257–1265.
  • 36. Ramer, R., Bublitz, K., Freimuth, N., Merkord, J., Rohde, H., Haustein, M., Borchert, P., Schmuhl, E., Linnebacher, M. and Hinz, B. Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1. FASEB J. 26 (2012) 1535–1548.
  • 37. Pisanti, S., Picardi, P., D'Alessandro, A., Laezza, C. and Bifulco, M. The endocannabinoid signaling system in cancer. Trends Pharmacol. Sci. 34 (2013) 273–282.
  • 38. Van Dross, R., Soliman, E., Jha, S., Johnson, T. and Mukhopadhyay, S. Receptor-dependent and receptor-independent endocannabinoid signaling: a therapeutic target for regulation of cancer growth. Life Sci. 92 (2013) 463–466.
  • 39. Scott, K.A., Shah, S., Dalgleish, A.G. and Liu, W.M. Enhancing the activity of cannabidiol and other cannabinoids in vitro through modifications to drug combinations and treatment schedules. Anticancer Res. 33 (2013) 4373–4380.
  • 40. Toyota, H., Jiang, X.Z., Asakura, H. and Mizuguchi, J. Thy28 partially prevents apoptosis induction following engagement of membrane immunoglobulin in WEHI-231 B lymphoma cells. Cell. Mol. Biol. Lett. 17 (2012) 36–48.
  • 41. Xie, C., Liu, G., Liu, J., Huang, Z., Wang, F., Lei, X., Wu, X., Huang, S., Zhong, D. and Xu, X. Anti-proliferative effects of anandamide in human hepatocellular carcinoma cells. Oncol. Lett. 4 (2012) 403–407.
  • 42. Nithipatikom, K., Isbell, M.A., Endsley, M.P., Woodliff, J.E. and Campbell, W.B. Anti-proliferative effect of a putative endocannabinoid, 2-arachidonylglyceryl ether in prostate carcinoma cells. Prostaglandins Other Lipid Mediat. 94 (2011) 34–43.
  • 43. Galanti, G., Fisher, T., Kventsel, I., Shoham, J., Gallily, R., Mechoulam, R., Lavie, G., Amariglio, N., Rechavi, G. and Toren, A. Delta 9-tetrahydrocannabinol inhibits cell cycle progression by downregulation of E2F1 in human glioblastoma multiforme cells. Acta Oncol. 47 (2008) 1062–1070.
  • 44. Laezza, C., Pisanti, S., Crescenzi, E. and Bifulco, M. Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells. FEBS Lett. 580 (2006) 6076–6082.
  • 45. Caffarel, M.M., Sarrió, D., Palacios, J., Guzmán, M. and Sánchez, C. Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res. 66 (2006) 6615–6621.
  • 46. Paulsen, K., Tauber, S., Timm, J., Goelz, N., Dumrese, C., Stolzing, A., Hass, R. and Ullrich, O. The cannabinoid receptors agonist WIN55212-2 inhibits macrophageal differentiation and alters expression and phosphorylation of cell cycle control proteins. Cell Commun. Signal. 9 (2011) 33.
  • 47. Santoro, A., Pisanti, S., Grimaldi, C., Izzo, A.A., Borrelli, F., Proto, M.C., Malfitano, A.M., Gazzerro, P., Laezza, C. and Bifulco, M. Rimonabant inhibits human colon cancer cell growth and reduces the formation of precancerous lesions in the mouse colon. Int. J. Cancer 125 (2009) 996–1003.
  • 48. Aceto, M.D., Scates, S.M. and Martin, B.B. Spontaneous and precipitated withdrawal with a synthetic cannabinoid, WIN 55212-2. Eur. J. Pharmacol. 416 (2001) 75–81.
  • 49. Chen, W., Tang, H., Liu, H., Long, L., Gong, Z., Zheng, J., Chi, M., Xie, Y., Zheng, Z., Li, S. and Wang, L. Novel selective antagonist of the cannabinoid CB1 receptor, MJ15, with prominent anti-obesity effect in rodent models. Eur. J. Pharmacol. 637 (2010) 178–185.
  • 50. Sun, Y., Alexander, S.P., Garle, M.J., Gibson, C.L., Hewitt, K., Murphy, S.P., Kendall, D.A. and Bennett, A.J. Cannabinoid activation of PPAR alpha; a novel neuroprotective mechanism. Br. J. Pharmacol. 152 (2007) 734–743.
  • 51. Patwardhan, A.M., Jeske, N.A., Price, T.J., Gamper, N., Akopian, A.N. and Hargreaves, K.M. The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc. Natl. Acad. Sci. USA 103 (2006) 11393–11398.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9cbf3fe5-ad72-43a0-afb3-37a48ed65ef4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.