PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 24 | 1 |

Tytuł artykułu

The effect of sulphur and nickel interaction on micronutrient content in Triticum aestivum L.

Treść / Zawartość

Warianty tytułu

PL
Wpływ interakcji siarki i niklu na zawartość mikroelementów w Triticum aestivum L.

Języki publikacji

EN

Abstrakty

EN
Excessive amounts of Ni alter the micronutrients status of plants. In turn, S not only plays a pivotal role in plant growth but is also involved in enhancing stress tolerance. The purpose of this study was to examine the effects of Ni and S on the micronutrients status in spring wheat. Three S-sulphate levels (2-standard, 6, and 9 mM) and four Ni treatments (0, 0.0004, 0.04, and 0.08 mM) in Hoagland’s nutrient solution were applied for 2 weeks. Ni excess at the standard S level generally reduced Mn, Mo, and Zn as well as increased Cl content in roots and shoots, reduced shoot B content without changes in the root content of this element, whilst Fe and Cu content rose in roots and decreased in shoots. The translocation of Fe and Cu from roots to shoots was repressed, but that of Mo was enhanced. The Mn and Zn translocation depended on Ni concentration, while that of B and Cl remained unaffected. Intensive S nutrition of Ni-exposed wheat, as a rule, elevated root and shoot Fe, B, Cl, Mn, and Zn content and increased root Cu content. Simultaneously, various changes in Fe, Cu, Mn, Mo, and Zn translocation were found. Our results imply that intensive S nutrition can effectively improve the micronutrient status in wheat hampered by Ni.
PL
Nadmiar Ni wpływa niekorzystnie na status mikroelementów w roślinach. Z kolei S nie tylko odgrywa kluczową rolę we wzroście roślin, ale również jest zaangażowana w zwiększoną tolerancję na stres. Celem prezentowanych badań było przeanalizowanie wpływu Ni i S na status mikroelementów w pszenicy jarej. W pożywce Hoaglanda, przez okres dwóch tygodni, zastosowano trzy poziomy S w formie siarczanowej (2-standardowy, 6 i 9 mM) oraz cztery traktowania Ni (0; 0,0004, 0,04 i 0,08 mM). Nadmiar Ni, wobec standardowej dawki S, na ogół zredukował zawartość Mn, Mo i Zn, oraz podwyższył zawartość Cl zarówno w korzeniach, jak i częściach nadziemnych, obniżył zawartość B w częściach nadziemnych, nie wywołując znaczących zmian tego pierwiastka w korzeniach, natomiast zawartość Fe i Cu zwiększyła się w korzeniach, a zmniejszyła w częściach nadziemnych. Translokacja Fe i Cu z korzeni do części nadziemnych ulegała represji, natomiast Mo zwiększeniu. Translokacja Mn i Zn zależała od koncentracji Ni, natomiast B i Cl nie zmieniała się. Intensywne odżywianie S, eksponowanej na Ni pszenicy, z reguły zwiększyło zawartość Fe, B, Cl, Mn oraz Zn w korzeniach i częściach nadziemnych, jak również podwyższyło zawartość Cu w korzeniach. Jednocześnie stwierdzono różne zmiany w translokacji Fe, Cu, Mn, Mo i Zn. Rezultaty naszych badań wskazują, że intensywne odżywanie S może efektywnie polepszyć status mikroelementów w pszenicy, niekorzystnie zmieniony przez Ni.

Wydawca

-

Czasopismo

Rocznik

Tom

24

Numer

1

Opis fizyczny

p.85-100,fig.,ref.

Twórcy

autor
  • Department of Plant Physiology, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
  • Department of Plant Physiology, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
autor
  • Departament of Botany, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
autor
  • Departament of Chemistry, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland

Bibliografia

  • Aibara I., Miwa K., 2014. Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity. Plant Cell Physiol., 55(12), 2027-2036. 98 R. MATRASZEK et al.
  • Ahmad M.S., Ashraf M., 2011. Essential roles and hazardous effects of nickel in plants. In: Reviews of Environmental Contamination and Toxicology (Ed. D.M. Whitacre). Springer, New York. 125-167.
  • Anjum N.A., Umar S., Iqbal M., Khan N.A., 2009. Carbon and nitrogen assimilation, and growth of moongbean (Vigna radiata L. Wilczek) cultivars grown under sulfur regimes. Arch. Agron. Soil Sci., 55(2), 207-215.
  • Aref F., 2011. Concentration and uptake of zinc and boron in corn leaf as affected by zinc sulfate and boric acid fertilizers in a deficient soil. Life Sci. J., 8(1), 26-31.
  • Barczak B., Knapowski T., Kozera W., Ralcewicz M., 2014. Effects of sulphur fertilization on the content and uptake of macronutrients in narrow-leaf lupin. Rom. Agric. Res., 31(2014), 245-251.
  • Bhalerao S.A., Sharma A.S., Poojari A.C., 2015. Toxicity of nickel in plants. Int. J. Pure App. Biosci., 3(2), 345-355.
  • Bose N., Naik S.K., Das D.K., 2009. Evaluation of nitrosulf and elemental sulphur on growth and yield of rapeseed (Brassica campestris L.) in India. Arch. Agron, Soil. Sci., 55(1), 79-90.
  • Chen C., Huang D., Liu J., 2009. Functions and toxicity of nickel in plants: recent advances and future prospects. A review. Clean – Soil, Air, Water, 37(4-5), 304-313.
  • Ernst W.H.O., Krauss G.J., Verkleij J.A.C., Wesenberg D., 2008. Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ., 31(1), 123-143.
  • Fabiano C.C., Tezotto T., Favarin J.L., Polacco J.C., Mazaffera P., 2015. Essentiality of nickel in plants: a role in plant stresses. Front. Plant Sci., 6, 754.
  • Gajewska E., Skłodowska M., 2007. Effect of nickel on ROS content antioxidative enzyme activities in wheat leaves. BioMetals., 20(1), 27-36.
  • Gajewska E., Skłodowska M., 2009. Nickel-induced changes in nitrogen metabolism in wheat shoots. J. Plant Physiol., 166(10), 1034-1044.
  • Gondek K., 2010. Assessment of the effect of sulphur supplied to the soil with mineral fertilizers and waste from magnesium sulphate production on its content in spring wheat (Triticum aestivum L.). (in Polish). Acta Agroph., 15(2), 269-280.
  • Hardulak L.A., Preuss M.L., Jez J.M., 2011. Sulfur metabolism as a support system for plant heavy metal tolerance. In: Detoxification of Heavy Metals. Series Soil Biology vol. 30. (Eds I. Sherameti, A. Varma). Springer-Verlag, Heidelberg, 289-301.
  • Hawkesford M.J., De Kok L.J., 2007. Sulphur in Plants: an Ecological Perspective. The Springer, Dordrecht, Netherlands.
  • Hussain M.B., Ali S., Azam A., Hina S., Farooq M.A., Ali B., Bharwana S.A., Gill M.B., 2013. Morphological, physiological and biochemical responses of plants to nickel stress: A review. Afr. J. Agric. Res., 8(17), 1596-1602.
  • Ishtiag S, Mahmood S., 2011. Phytotoxicity of nickel and its accumulation in tissues of three Vigna species at their early growth stages. J. App. Bot. Food Qual., 84(2), 223-228.
  • Islam M., Akmal M., Khan M.A., 2013. Effect of phosphorus and sulphur application on soil nutrient balance under Chickpea (Cicer arietinum) monocropping. Rom. Agric. Res., 30(2013), 223-231.
  • Jones J.B. Jr., 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, Boca Raton, FL, USA. Khan N.A., Singh S., Umar S., 2008. Sulfur Assimilation and Abiotic Stress in Plants. Springer- Verlag, Berlin Heidelberg.
  • Kulhánek M., Balíka J., Černýa J., Peklováa L., Sedlářa O., 2014. Winter wheat fertilizing using nitrogen-sulphur fertilizer. Arch. Agron. Soil. Sci., 60(1), 67-74. López M.A., Magnitski S., 2011. Nickel: The latest of the essentials micronutrients. Agron. Colomb., 29(1), 49-56.
  • Marmiroli M., Gonnelli C., Maestri E., Gabbrielli R., Marmiroli N., 2004. Localisation of nickel and ineral nutrients Ca, K, Fe, Mg by Scanning Electron Microscopy microanalysis in tissues of the nickel-hyperaccumulator Alyssum bertolonii Desv. and the non-accumulator Alyssum montanum L. Plant Biosyst., 138(3), 231-243.
  • Mašauskienė A., Mašauskas V., 2012. Soil sulphur problems and management. In: Sustainable Agriculture (Ed. C. Jakobsson). Baltic University Press.
  • Mitra G.N., 2015. Regulation of Nutrient Uptake by Plants. A Biochemical and Molecular Approach. Springer, India. Mojiri A., Aziz H.A., 2011. Effects of municipal wastewater on accumulation of heavy metals in soil and wheat (Triticum aestivum L.) with two irrigation methods. Rom. Agric. Res., 28, 217-222.
  • Moosavi A.A., Mansouri S., Zahedifar M., 2015. Effect of soil water stress and nickel application on micronutrient status of canola grown on two calcareous soils. Plant. Prod. Sci., 18(3), 377-387.
  • Moosavi A.A., Mansouri S., Zahedifar M., Sadikhani M.R., 2014. Effect of water stress and nickel application on yield components and agronomic characteristics of canola grown on two calcareous soils. Arch. Agron. Soil. Sci., 60(12), 1747-1764.
  • Naik S.K., Sasmal S., Sur P., Pandit T., Mandal M., Das D.K., 2010. Mobility of lead and nickel in soil in relation to nutrition of sesame. Arch. Agron. Soil. Sci., 56(2), 223-236.
  • Nishida S., Kato A., Tsuzuki C., Yoshida J., Mizuno T., 2015. Induction of nickel accumulation in response to zinc deficiency in Arabidopsis thaliana. Int. J. Mol. Sci., 16(5), 9420-9430.
  • Nowosielski O., 1974. Methods for the Determination of Fertilisation Requirements (in Polish). PWRiL, Warszawa, Poland.
  • Pennazio S., 2012. Metals essential for plants: the nickel case. Theor. Biol, Forum., 105(2), 83-98. Prasad R., 2014. Major sulphur compounds and their role in human nutrition and health – an overview. Proc. Natl. Acad. Sci. India. Sec. B Biol. Sci., 80(5), 1045-1054.
  • Quimado M.O., Fernando E.S., Trinidad L.C., Doronila A., 2015. Nickel-hyperaccumulating species of Phyllanthus (Phyllanthaceae) from the Philippines. Aust. J. Bot., 63(2), 103-110.
  • Rahman H., Sabreen S., Alam S., Kawai S., 2005. Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J. Plant. Nutr., 28(3), 393-404.
  • Rezvani M., Zaefirian F., 2011. Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. Aust. J. Agric. Eng., 2(4), 114-119.
  • Sazanova K.A., Bashmakov D.I., Brazaitytė A., Bobinas Č., Duchovskis P., Lukatkin A.S., 2012. he effect of heavy metals and thidiazuron on winter wheat (Triticum aestivum L.) seedlings. Žemdirbystė=Agriculture, 99(3), 273-278.
  • Shukla R., Sharma Y.K., Shukla A.K., 2014. Molecular mechanism of nutrient uptake in plants. Int. J. Curr. Res. Acad. Rev., 2(12), 142-154.
  • Staugaitis S., Brazienė Z., Marcinkevičius A., Mažeika R., Antanaitis Š., Staugaitienė R., 2014. Spring barley as affected by nitrogen and sulphur fertilizer rates using different diagnostic methods. Žemdirbystė=Agriculture, 101(4), 373-380.
  • Šiaudinis G., 2010. The effect of nitrogen and sulphur fertilization on the elemental composition and seed quality of spring rape. Žemdirbystė=Agriculture, 97(4), 47-56.
  • Szulc P., Bocianowski J., Rybus-Zając M., 2012. The effect of soil supplementation with nitrogen and elemental sulphur on chlorophyll content and grain yield of maize (Zea mays L.). Žemdirbystė=Agriculture, 99(3), 247-254.
  • Togay Y., Togay N., Cig F., Erman M., Celen A.E., 2008. The effect of sulphur applications on nutrient composition, yield and some yield components of barley (Hordeum vulgare L.). Afr. J.Biotechnol., 7(18), 3255-3260. 100 R. MATRASZEK et al.
  • Wang Y., Wang S., Nan Z., Ma J., Zang F., Chen Y., Li Y., Zhang Q., 2015. Effects of Ni stress on the uptake and translocation of Ni and other mineral nutrition elements in mature wheat grown in sierozems from northwest of China. Environ. Sci. Pollut. Res., 22(24), 19756-19763.
  • Wolf B., 1974. Improvement in the azomethine-H method for determination of boron. Commun. Soil. Sci. Plant. Anal., 5(1), 39-44. Yusuf M., Fariduddin Q., Hayat S., Ahmad A., 2011. Nickel: an overview of uptake, essentiality and toxicity in plants. Bull. Environ. Contam. Toxicol., 86(1), 1-17.
  • Zagorchev L, Seal C.E., Kranner I, Odjakova M., 2013. A central role for thiols in plant tolerance to abiotic stress. Int. J. Mol. Sci., 14(4), 7405-7432.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9be7923f-e979-45eb-9eb5-78db907e57fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.