PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 70 | 1 |

Tytuł artykułu

Epiphytic bacteria on lettuce affect the feeding behavior of an invasive pest slug

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Epifityczne bakterie na liściach sałaty modyfikują zachowania pokarmowe inwazyjnego ślimaka z rodziny ślinikowatych

Języki publikacji

EN

Abstrakty

EN
Plant–animal interactions are not isolated pairwise relationships but are always accompanied by diverse assemblages of microbes. Additional to direct effects of microorganisms on their hosts, recent investigations demonstrated that bacteria associated with plants can modify the behavior of organisms of higher trophic levels. However, in the context of herbivory, functions of non-phytopathogenic bacteria colonizing leaf surfaces remain understudied. This study showed that naturally occurring epiphytic bacteria affect the feeding behavior of a generalist herbivore. Epiphytic bacteria isolated from leaves of Lactuca sativa var. capitata were screened for their potential to influence feeding choices of the slug Arion vulgaris. Cultivated bacteria were inoculated in artificial food substrates or on sterile leaves of gnotobiotic lettuce plants and were offered to slugs in different behavioral bioassays. A large proportion of bacterial strains tested induced behavioral alterations in the feeding choices of slugs. Behavioral responses of slugs were further modified by antibiotic treatment of slugs prior to choice tests indicating that both bacteria associated with plants and animals affect plant–animal interactions. Our results emphasize the important role of bacteria in plant–animal interactions and suggest a prominent role of bacteria in herbivory in natural, horticultural, and agricultural systems.
PL
Ekologicznych interakcji roślin i zwierząt nie można rozpatrywać wyłącznie jako odizolowanych relacji dwóch gatunków, ich tłem bowiem są rozliczne zespoły drobnoustrojów. Współczesne badania wskazują, że poza bezpośrednim wpływem na gospodarza, mikroorganizmy związane z roślinami mogą modyfikować zachowanie organizmów z wyższych poziomów troficznych. Niestety, w kontekście roślinożerności ekologiczna funkcja niepatogennych bakterii kolonizujących liście pozostaje niezbadana. Nasze badania wykazały, że naturalnie występujące epifityczne bakterie wpływają na zachowania pokarmowe niewyspecjalizowanego roślinożercy. Aby to osiągnąć zastosowaliśmy epifityczne bakterie wyizolowane z liści Lactuca sativa var. capitata i określiliśmy ich wpływ na wybory pokarmowe ślinika Arion vulgaris. Sztuczne substraty pokarmowe oraz gnotobiotyczne liście sałaty zaszczepione koloniami bakteryjnymi zaoferowano ślimakom w różnych testach behawioralnych. Znaczący odsetek zastosowanych szczepów bakteryjnych spowodował zmianę trybu żerowania zwierząt eksperymentalnych. Odpowiedź ta mogła być dalej modyfikowana antybiotykami podawanymi zwierzętom przed testami behawioralnymi, co wskazuje, że zarówno bakterie występujące na roślinach jak i na zwierzętach mogą istotnie wpływać na interakcje roślina–zwierzę. Nasze badania wskazują na istotną rolę bakterii w modyfikowaniu relacji roślin i zwierząt oraz sugerują znaczący wpływ tych mikroorganizmów na zjawisko roślinożerności zarówno w systemach naturalnych, jak i w kontekście upraw ogrodniczych czy rolnych.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

70

Numer

1

Opis fizyczny

Article 1708 [11p.], fig.,ref.

Twórcy

Bibliografia

  • 1. Christian N, Whitaker BK, Clay K. Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Front Microbiol. 2015;6:869. https://doi.org/10.3389/fmicb.2015.00869
  • 2. van Dam NM, Heil M. Multitrophic interactions below and above ground: en route to the next level. J Ecol. 2011;99(1):77–88. https://doi.org/10.1111/j.1365-2745.2010.01761.x
  • 3. Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T. Effects of decomposers and herbivores on plant performance and aboveground plant–insect interactions. Oikos. 2005(108):503–510. https://doi.org/10.1111/j.0030-1299.2005.13664.x
  • 4. van der Putten WH. A multitrophic perspective on functioning and evolution of facilitation in plant communities. J Ecol. 2009;97(6):1131–1138. https://doi.org/10.1111/j.1365-2745.2009.01561.x
  • 5. Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB. Microbiology. Animal behavior and the microbiome. Science. 2012;338(6104):198–199. https://doi.org/10.1126/science.1227412
  • 6. Junker RR, Romeike T, Keller A, Langen D. Density-dependent negative responses by bumblebees to bacteria isolated from flowers. Apidologie. 2014;45(4):467–477. https://doi.org/10.1007/s13592-013-0262-1
  • 7. Theis KR, Schmidt TM, Holekamp KE. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci Rep. 2012;2:615. https://doi.org/10.1038/srep00615
  • 8. Vannette RL, Gauthier ML, Fukami T. Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism. Proc R Soc B. 2013;280:20122601. https://doi.org/10.1098/rspb.2012.2601
  • 9. Junker RR, Loewel C, Gross R, Dötterl S, Keller A, Blüthgen N. Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol. 2011;13(6):918–924. https://doi.org/10.1111/j.1438-8677.2011.00454.x
  • 10. Junker RR, Keller A. Microhabitat heterogeneity across leaves and flower organs promotes bacterial diversity. FEMS Microbiol Ecol. 2015;91(9):fiv097. https://doi.org/10.1093/femsec/fiv097
  • 11. Shade A, McManus PS, Handelsman J. Unexpected diversity during community succession in the apple flower microbiome. MBio. 2013(4):e00602-00612. https://doi.org/10.1128/mbio.00602-12
  • 12. Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry. 2010;42(5):669–678. https://doi.org/10.1016/j.soilbio.2009.11.024
  • 13. Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012(17):478–486. https://doi.org/10.1016/j.tplants.2012.04.001
  • 14. Hirano SS, Upper CD. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev. 2000;64(3):624–653. https://doi.org/10.1128/MMBR.64.3.624-653.2000
  • 15. Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-b-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2012(193):997–1008. https://doi.org/10.1111/j.1469-8137.2011.04001.x
  • 16. Fuernkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G. Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol. 2012(63):418–428. https://doi.org/10.1007/s00248-011-9942-4
  • 17. Fridman S, Izhaki I, Gerchman Y, Halpern M. Bacterial communities in floral nectar. Environ Microbiol Rep. 2012(4):97–104. https://doi.org/10.1111/j.1758-2229.2011.00309.x
  • 18. Herrera CM, Garcia IM, Perez R. Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology. 2008;89(9):2369–2376. https://doi.org/10.1890/08-0241.1
  • 19. Eisikowitch D, Lachance MA, Kevan PG, Willis S, Collinsthompson DL. The effect of the natural assemblage of microorganisms and selected strains of the yeast Metschnikowia reukaufii in controlling the germination of pollen of the common milkweed Asclepias syriaca. Can J Bot. 1990(68):1163–1165. https://doi.org/10.1139/b90-147
  • 20. Herrera CM, Pozo MI, Medrano M. Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. Ecology. 2013(94):273–279. https://doi.org/10.1890/12-0595.1
  • 21. Zahoor AW, Nasheeman A, Tabasum M, Riyaz-Ul-Hassan S. Plant–endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol. 2015;99:2955–2965. https://doi.org/10.1007/s00253-015-6487-3
  • 22. Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci. 2010;15(9):507–514. https://doi.org/10.1016/j.tplants.2010.05.007
  • 23. Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69(4):1875–1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003
  • 24. Mercier J, Lindow SE. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol. 2000;66(1):369–374. https://doi.org/10.1128/AEM.66.1.369-374.2000
  • 25. Whipps JM, Hand P, Pink D, Bending GD. Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol. 2008;105(6):1744–1755. https://doi.org/10.1111/j.1365-2672.2008.03906.x
  • 26. Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on fieldgrown lettuce. ISME J. 2012;6(10):1812–1822. https://doi.org/10.1038/ismej.2012.32
  • 27. Junker RR, Tholl D. Volatile organic compound mediated interactions at the plant–microbe interface. J Chem Ecol. 2013;39:810–825. https://doi.org/10.1007/s10886-013-0325-9
  • 28. Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD. Both leaf properties and microbemicrobe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl Environ Microbiol. 2010;76(24):8117–8125. https://doi.org/10.1128/AEM.01321-10
  • 29. Williams TR, Moyne AL, Harris LJ, Marco ML. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One. 2013;8(7):e68642. https://doi.org/10.1371/journal.pone.0068642
  • 30. Jacques MA, Kinkel LL, Morris CE. Population sizes, immigration, and growth of epiphytic bacteria on leaves of different ages and positions of field-grown endive (Cichorium endivia var. latifolia). Appl Environ Microbiol. 1995;61(3):889–906.
  • 31. Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106
  • 32. Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012(10):828–840. https://doi.org/10.1038/nrmicro2910
  • 33. Walker AJ, Glen DM, Shewry PR. Bacteria associated with the digestive system of the slug Deroceras reticulatum are not required for protein digestion. Soil Biology and Biochemistry. 1999;31:1387–1394. https://doi.org/10.1016/S0038-0717(99)00054-1
  • 34. Cardoso AM, Cavalcante JJV, Vieira RP, Lima JL, Grieco MAB, Clementino MM, et al. Gut bacterial communities in the giant land snail Achatina fulica and their modification by sugarcane-based diet. PLoS One. 2012;7(3):e33440. https://doi.org/10.1371/journal.pone.0033440
  • 35. Newton AC, Gravouil C, Fountaine JM. Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann Appl Biol. 2010;157(3):343–359. https://doi.org/10.1111/j.1744-7348.2010.00437.x
  • 36. FAO. FAOSTAT – crops – lettuce and chicory [Internet]. 2017 [cited 2017 Mar 24]. Available from: http://faostat.fao.org
  • 37. Li Z, Zhao X, Sandhu AK, Gu L. Effects of exogenous abscisic acid on yield, antioxidant capacities, and phytochemical contents of greenhouse grown lettuces. J Agric Food Chem. 2010(26):6503–6509. https://doi.org/10.1021/jf1006962
  • 38. Gismervik K, Bruheim T, Rarvik LM, Haukeland S, Skaar I. Invasive slug populations (Arion vulgaris) as potential vectors for Clostridium botulinum. Acta Vet Scand. 2014;56(65):1–7. https://doi.org/10.1186/s13028-014-0065-z
  • 39. Kozłowski J. Expansion of the invasive slug species Arion lusitanicus, Mabille, 1868 (Gastropoda: Pulmonata: Stylommatophora) and dangers to garden crops – a literature review with some new data. Folia Malacol. 2011;19(4):249–258. https://doi.org/10.2478/v10125-011-0005-8
  • 40. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2012;40:48–53. https://doi.org/10.1093/nar/gkr1202
  • 41. Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  • 42. Bechtold N, Ellis J, Pelletier G. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes Rendus de l’Académie des Sciences. 1993;316:1194–1199.
  • 43. Miché L, Balandreau J. Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Appl Environ Microbiol. 2001;67(7):3046–3052. https://doi.org/10.1128/AEM.67.7.3046-3052.2001
  • 44. Whelan RJ. An artificial medium for feeding choice experiments with slugs. J Appl Ecol. 1982;19:89–94. https://doi.org/10.2307/2402993
  • 45. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016.
  • 46. Ercolani GL. Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microb Ecol. 1990;21(1):35–48. https://doi.org/10.1007/BF02539143
  • 47. Piechulla B, Degenhardt J. The emerging importance of microbial volatile organic compounds. Plant Cell Environ. 2014;37:811–812. https://doi.org/10.1111/pce.12254
  • 48. Matson PA, Parton WJ, Power AG, Swift MJ. Agricultural intensification and ecosystem properties. Science. 1997(277):504–509. https://doi.org/10.1126/science.277.5325.504
  • 49. Zurek L, Ghosh A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl Environ Microbiol. 2014;80(12):3562–3567. https://doi.org/10.1128/AEM.00600-14
  • 50. Tucker CM, Fukami T. Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc Biol Sci. 2014;281(1778):20132637. https://doi.org/10.1098/rspb.2013.2637

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9bac8423-707a-4a4b-8d91-e05976e57287
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.