PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 4 |

Tytuł artykułu

Allelopathic properties of extracts and some metabolites present in the tissues of common buckwheat (Fagopyrum esculentum moench) seedlings

Treść / Zawartość

Warianty tytułu

PL
Właściwości allelopatyczne ekstraktów i niektórych metabolitów obecnych w tkankach siewek gryki zwyczajnej (Fagopyrum esculentum moench)

Języki publikacji

EN

Abstrakty

EN
The aim of the work was to evaluate the allelopathic effect of water extracts from the above-ground parts of the seedlings of control buckwheat and buckwheat treated with methyl jasmonate vapours (JA-Me), as well as extracts enriched with 2-phenylethylamine (PEA) and its metabolites: phenylacetic acid (PAA) and 2-phenylethanol (PE), on the growth of the seedlings of dicotyledonous (tomato, radish and watercress) and monocotyledonous vegetables (maize). Also their effect on the level of phenolic compounds and flavonoids was determined, as well as the degree of lipid peroxidation in acceptor plant tissues. In all the cases, plant growth inhibition was noted, and the effect differed in relation to the applied extract, the studied species, and the duration of allelochemical stress. Application of JA-Me caused an increase in the content of phenolic compounds and, as an effect, the allelopathic potential of buckwheat tissues. Generally, the roots of the tested acceptor plants were more susceptible to the effect of the studied extracts than the above-ground parts. In the case of maize, the addition of PEA, PAA, and PE strongly inhibited the growth of both the roots and the above-ground plant parts. Different phenomenon occurred, on the other hand, in tomato roots, the growth of which was stimulated by PE. Buckwheat extracts also caused enhancement in lipid peroxidation in maize, although adding PEA, PAA, and PE limited the process. Buckwheat extracts also increased the biosynthesis of phenolic compounds and flavonoids in tomato and maize tissues, which may be related to the activation of the adaptation mechanism to stressful conditions.
PL
W pracy oceniono właściwości allelopatyczne wodnych ekstraktów z nadziemnych części siewek gryki kontrolnej oraz traktowanej parami jasmonianu metylu (JA-Me), a także ekstraktów wzbogaconych 2-fenyloetyloaminą (PEA) oraz jej metabolitami: kwasem fenylooctowym (PAA) i 2-fenyloetanolem (PE) w stosunku do siewek roślin warzywnych dwuliściennych (pomidor, rzodkiewka, rzeżucha) oraz jednoliściennych (kukurydza). Określono także ich wpływ na poziom związków fenolowych i flawonoidów oraz stopień peroksydacji lipidów w tkankach roślin akceptorowych. We wszystkich przypadkach odnotowano hamowanie wzrostu tych roślin, a działanie to różniło się w zależności od zastosowanego ekstraktu, badanego gatunku oraz czasu trwania stresu allelochemicznego. Zastosowanie JA-Me spowodowało podwyższenie zawartości związków fenolowych i w konsekwencji potencjału allelopatycznego tkanek gryki. Generalnie, korzenie testowanych roślin akceptorowych były bardziej wrażliwe na działanie badanych ekstraktów niż części nadziemne. W przypadku kukurydzy dodatek PEA, PAA i PE silnie hamował zarówno wzrost korzeni, jak i części nadziemnych. Odmienne zjawisko wystąpiło natomiast w korzeniach pomidora, których wzrost był stymulowany przez PE. Ekstrakty z gryki powodowały zwiększenie procesu peroksydacji lipidów u kukurydzy, lecz dodanie PEA, PAA i PE ograniczało ten proces. Ekstrakty z gryki wpływały też na zwiększoną biosyntezę związków fenolowych i flawonoidów w tkankach pomidora i kukurydzy, co może być związane z uruchomieniem mechanizmów przystosowania do warunków stresowych.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

13

Numer

4

Opis fizyczny

p.139-151,ref.

Twórcy

autor
  • Department of Plant Physiology and Genetics, University of Natural Sciences and Humanities in Siedlce, Prusa 12, 08-110 Siedlce, Poland
  • Department of Plant Physiology and Genetics, University of Natural Sciences and Humanities in Siedlce, Prusa 12, 08-110 Siedlce, Poland
autor
  • Department of Plant Physiology and Genetics, University of Natural Sciences and Humanities in Siedlce, Prusa 12, 08-110 Siedlce, Poland
autor
  • Department of Plant Physiology and Genetics, University of Natural Sciences and Humanities in Siedlce, Prusa 12, 08-110 Siedlce, Poland
  • Department of Plant Physiology and Genetics, University of Natural Sciences and Humanities in Siedlce, Prusa 12, 08-110 Siedlce, Poland
autor
  • Department of Plant Physiology and Genetics, University of Natural Sciences and Humanities in Siedlce, Prusa 12, 08-110 Siedlce, Poland

Bibliografia

  • Anaya A.L., Hernandez-Bautista B.E., Jimenez-Estrada A., Velasco-Ibarra L., 1992. Phenylacetic acid as a phytotoxic compound of corn pollen. J. Chem. Ecol. 18, 897-905.
  • Baziramakenga R., Leroux G.D., Simard R.R., 1995. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. J. Chem. Ecol. 21, 1271-1285.
  • Berrah G., Konetzka W.A., 1962. Selective and reversible inhibition of the synthesis of bacterial deoxyribonucleic acid by phenethyl alcohol. J. Bacteriol. 83, 738-744.
  • Bi H.H., Zeng R.S., Su L.M., An M., Luo S.M., 2007. Rice allelopathy induced by methyl jasmonate and methyl salicylate. J. Chem. Ecol. 33, 1089-1103.
  • Bido G., Ferrarese M.L.L., Marchiosi R., Ferrarese-Filho O., 2010. Naringenin inhibits the growth and stimulates the lignification of soybean root. Braz. Arch. Biol. Technol. 53, 533-542.
  • Chou Ch.-H., Patrick Z.A., 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye. J. Chem. Ecol. 2, 369-387.
  • De Martino L., Mancini E., Rolim de Almeida L.F., De Feo V., 2010. The antigerminative activity of twenty-seven monoterpenes. Molecules 15, 6630-6637.
  • Eriksson C., Månsson P.E., Sjödin K., 2008. Antifeedants and feeding stimulants in bark extracts of ten woody non-host species of the pine weevil, Hylobius abietis. J. Chem. Ecol. 34,1290-1297.
  • Fini A., Brunetti C., Di Ferdinando M., Ferrini F., Tattini M., 2011. Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal. Behavior 6, 709-711.
  • Gmerek J., Politycka B., 2011. Response of maize, pea and radish roots to allelochemical stress. Acta Biol. Crac. Ser. Bot. 53(1), 32-37.
  • Golisz A., Lata B., Gawronski S.W., Fujii Y., 2007a. Specific and total activities of the allelochemicals identified in buckwheat. Weed Biol. Manag. 7, 164-171.
  • Golisz A., Gawronska H., Gawronski S.W., 2007b. Influence of buckwheat allelochemicals on crops and weeds. Allelopathy J. 19, 337-350.
  • Golisz A., Sugano M., Fujii Y., 2008. Microarray expression profiling of Arabidopsis thaliana L. in response to allelochemicals identified in buckwheat. J. Exp. Bot. 59, 3099-3109.
  • Groppa M.D., Tomaro M.L., Benavides M.P., 2001. Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci. 161, 481-488.
  • Hodges D.M., DeLong J.M., Forney Ch.F., Prange R.K., 1999. Improving the thiobarbituric acidreactive- substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207 604-611.
  • Horbowicz M., Chrzanowski G., Koczkodaj D., Mitrus J., 2011a. The effect of methyl jasmonate vapors on content of phenolic compounds in seedlings of common buckwheat (Fagopyrumesculentum Moench). Acta Soc. Bot. Pol. 80, 5-9.
  • Horbowicz M., Kosson R., Wiczkowski W., Koczkodaj D., Mitrus J., 2011b. The effect of methyl jasmonate on accumulation of 2-phenylethylamine and putrescine in seedlings of commonbuckwheat (Fagopyrum esculentum). Acta Physiol. Plant. 33, 897-903.
  • Horbowicz M., Wiczkowski W., Kosson R., 2013. Identyfikacja oraz analiza zawartości 2-fenyloetylaminy w tkankach gryki i innych roślin. Mat. III Krajowej Konf. Naturalnesubstancje roślinne – aspekty strukturalne i aplikacyjne, Puławy, 138-141.
  • Inderjit, Duke S.O., 2003. Ecophysiological aspects of allelopathy. Planta 217, 529-539.
  • Inderjit, Wardle D.A., Karban R., Callaway R.M., 2011. The ecosystem and evolutionary contexts of allelopathy. Trends Ecol. Evol. 26, 655-662.
  • Iqbal Z., Hiradate S., Noda A., Isojima S.I., Fujii Y., 2002. Allelopathy of buckwheat: assessment of allelopathic potential of extract of aerial parts of buckwheat and identification of fagomineand other related alkaloids as allelochemicals. Weed Biol. Manag. 2, 110-115.
  • Janeš D., Kantar D., Kreft S., Prosen H., 2009. Identification of buckwheat (Fagopyrum esculentum Moench) aroma compounds with GC-MS. Food Chem. 112, 120-124.
  • Kalinova J., Vrchotova N., Triska J., 2007. Exudation of allelopathic substances in buckwheat (Fagopyrum esculentum Moench.). J. Agric. Food Chem. 55, 6453-6459.
  • Kato-Noguchi H., 2009. Stress-induced allelopathic activity and momilactone B in rice. Plant Growth Regul. 59, 153-158.
  • Kato-Noguchi H., 2011. Barnyard grass-induced rice allelopathy and momilactone B. J. Plant Physiol. 168, 1016-1020.
  • Kawano T., Pinontoan R., Uozumi N., Morimitsu Y., Miyake CH., Asada K., Muto S., 2000. Phenylethylamine-induced generation of reactive oxygen species and ascorbate free radicals in tobacco suspension culture: mechanism for oxidative burst mediating Ca2+ influx. PlantCell Physiol. 41, 1259-1266.
  • Khanh T.D., Chung M.I., Xuan T.D., Tawata S., 2005. The exploitation of crop allelopathy in sustainable agricultural production. J. Agr. Crop Sci. 191, 172-184.
  • Kim H.J., Park K.J., Lim J.H., 2011. Metabolomic analysis of phenolic compounds in buckwheat (Fagopyrum esculentum M.) sprouts treated with methyl jasmonate. J. Agric. Food Chem. 59,5707-5713.
  • Lester G., 1965. Inhibition of growth, synthesis, and permeability in Neurospora crassa by phenethyl alcohol. J. Bacteriol. 90, 29-37.
  • Leuba V., LeTourneau D., 1990. Auxin activity of phenylacetic acid in tissue culture. J. Plant Growth Regul. 9, 71-76.
  • Maqbool N., Wahid A., Farooq M., Cheema Z.A., Siddique K.H.M., 2013. Allelopathy and abiotic stress interaction in crop plants. [In:] Allelopathy, Z.A. Cheema, M. Farooq, A. Wahid(eds), Springer-Verlag Berlin Heidelberg, 451-468.
  • Mewis I., Khan M.A.M., Glawischnig E., Schreiner M., Ulrichs C., 2012. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). PLoSONE 7, e48661.
  • Mioduszewska H., Klocek J., Horbowicz M., Wolska K., 2013. Effect of water extracts from tissues of common buckwheat on seed germination and seedling growth of winter wheat andlettuce. Acta Sci. Pol., Agricultura 12(3), 45-54, www.agricultura.acta.utp.edu.pl
  • Ordonez A.A.L., Gomez J.D., Vattuone M.A., Isla M.I., 2006. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 97, 452-458.
  • Piotrowska-Niczyporuk A., Bajguz A., 2014. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris(Trebouxiophyceae). Plant Growth Regul. 73, 57-66.
  • Politycka B., 1998. Phenolics and the activities of phenylalanine ammonia-lyase, phenol-β- glucosyltransferase and β-glucosidase in cucumber roots as affected by phenolicallelochemicals. Acta Physiol. Plant. 20, 405-410.
  • Sakihama Y., Cohen M.F., Grace S.C., Yamasaki H., 2002. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants.Toxicology 177, 67-80.
  • Sharma P., Jha A.B., Dubey R.S., Pessarakli M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot.2012, 1-26.
  • Singleton V.L., Orthofer R., Lamuela- Raventos R.M., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method. Enzymol.299, 152-178.
  • Tatnell L.V., Jones K., Clarke J.H., 2012. The suppression of common couch grass (Elytigia repens) by buckwheat. Proc. Crop Protection in Northern Britain, Dundee, Scotland, 37-42.
  • Tieman D., Taylor M., Schauer N., Fernie A.R., Hanson A.D., Klee H.J., 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and2-phenylacetaldehyde. PNAS 103, 8287-8292.
  • Tieman D.M., Loucas H.M., Kim J.Y., Clark D.G., Klee H.J., 2007. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol.Phytochemistry 68, 2660-2669.
  • Tsuzuki E., Dong Y., 2003. Buckwheat allelopathy: use in weed management. Allelopathy J. 12, 1-12.
  • Uddin M.R., Thwe A.A., Kim Y.B., Park W.T., Chae S.Ch., Park S.U., 2013. Effects of jasmonates on sorgoleone accumulation and expression of genes for sorgoleone biosynthesisin sorghum roots. J. Chem. Ecol. 39, 712-722.
  • Uma B., Podile A.R., 2014. Overlapping sets of transcripts from host and non-host interactions of tomato are expressed early during non-host resistance. Plant Omics 7, 19-27.
  • Wang J., Xu T., Zhang L., Zhong Z., Luo S., 2005. Effect of methyl jasmonate on hydroxamic acid and phenolic acid content in maize and its allelopathic activity to Echinochloa crus-galli (L.). Proc. of the 4th World Congress on Allelopathy, Wagga Wagga, New South Wales, Australia, 450-453.
  • Wasternack C., 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100, 681-697.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9ae0821c-8179-44d4-8f4a-b83becf98546
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.