PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 1 |

Tytuł artykułu

N-Acylhomoserine Lactones (AHLs) as phenotype control factors produced by Gram -negative bacteria in natural ecosystems

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bacteria are able to sense an increase in cell population density and to respond to it by the induction of a particular set of genes. This mechanism, called quorum sensing, includes in gram-negative bacteria the production and secretion of an acyl homoserine lactone, which diffuses through the cell wall, from the cell to the medium. Bacteria use the quorum sensing mechanism to regulate a variety of phenotype, such as bioluminescence, virulence factor production, biofilm formation, and motility, which are essential for the successful establishment of a symbiotic or pathogenic relationship with a eukaryotic host. Understanding of mechanism of quorum sensing creates the possibility of elaborating new drugs efficient against pathogens. It also suggests ideal targets for agricultural application of bacteria. In the review the basic concepts concerning the bacterial quorum sensing mechanism were discussed. In this paper some aspects of eukaryote-bacterial cross talk in natural environment were also described.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

1

Opis fizyczny

p.15-21,ref.

Twórcy

autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, Poznan, Poland
autor

Bibliografia

  • 1. DECHO A.W., NORMAN R.S., VISSCHER P.T. Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol. 18, 73, 2010.
  • 2. WHITEHEAD N.A., BARNARD A.M.L., SLATER H., SIMPSON N.J.L, SALMOND G.P.C. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25, 365, 2001.
  • 3. GONZÁLEZ J.E., KESHAVAN N.D. Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70, 859, 2006.
  • 4. TUROVSKIY Y., KASHTANOV D., PASKHOVER B., CHIKINDAS M.L. Quorum sensing: fact, fiction and everything in between. Adv. Appl. Microbiol. 62, 191, 2007.
  • 5. KLEEREBEZEM M., QUADRI L.E.N., KUIPERS O.P., DE VOS W.M. Quorum sensing by peptide pheromones and two-component signal-transduction systems in gram-positive bacteria. Mol. Microbiol. 24, 895, 1997.
  • 6. SUNTHARALINGAM P., CVITKOVITCH D.G. Quorum sensing in streptococcal biofilm formation. TRENDS Microbiol. 13, 3, 2005.
  • 7. EBERL L. N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Syst. Appl. Microbiol. 22, 493, 1999.
  • 8. PAGGI R.A., MARTONE C.B., FUQUA C., DE CASTRO R.E. Detection of quorum sensing signals in the haloalkaliphilic archeon Natronococcus occultus. FEMS Microbiol. Lett. 221, 49, 2003.
  • 9. RIVAS M., SEEGER M., JEDLICKI E., HOLMES D.S. Second acyl-homoserine lactone producing system in the extreme acidophile Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol. 73, 3225, 2007.
  • 10. WILLIAMS P., WINZER K., CHAN W. C., CÁMARA M. Look who’s talking: communication and quorum sensing in the bacterial world. Phil. Trans. R. Soc. B. 362, 1119, 2007.
  • 11. LITHGOW J.K., WILKINSON A., HARDMAN A., RODELAS B., WISNIEWSKI-DYE F., WILLIAMS P., DOWNIE J.A. The regulatory locus cinRI in Rhizobium leguminosarum controls a network of wuorum-sensing loci. Mol. Microbiol. 37, 81, 2000.
  • 12. WINSON M.K., CÁMARA M., LATIFI A., FOGLINO M., CHHABRA S.R., DAYKIN M., BALLY M., CHAPON V., SALMOND G. P., BYCROFT B. W. Multiple N-acyl-Lhomoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA. 92, 9427, 1995.
  • 13. SAKURAGI Y., KOLTER R. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J. Bacteriol. 189, 5383, 2007.
  • 14. WAGNER-DÖBLER I., THIEL V., EBERL L., ALLGAIER M., BODOR A., MEYER S., EBNER S., HENNING A., PUKALL R., SCHULZ S. Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host-associated marine alphaproteobacteria. Chem.-Biochem. 6, 2195, 2005.
  • 15. YATES E.A., PHILIPP B., BUCKLEY C., ATKINSON S., CHHABRA S.R., SOCKETT R.E., GOLDNER M., DESSAUX Y., CÁMARA M., SMITH H., WILLIAMS P. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature- and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70, 5635, 2002.
  • 16. PEARSON J.P., VAN DELDEN C., IGLEWSKI B.H. Active efflux and diffusion are involved in transport of Psedomonas aeruginosa cell-to-cell signals. J. Bacteriol. 181, 1203, 1999.
  • 17. KAPLAN H.B., GREENBERG E.P. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J. Bacteriol. 163, 1210, 1985.
  • 18. MORÉ M.I., FINGER L.D., STRYKER J.L., FUQUA C., EBERHARD A., WINANS S.C. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Sciences. 272, 1655, 1996.
  • 19. SCHAEFER A.L., VAL D.L., HANZELKA B.L., CRONAN J.E., GREENBERG E.P. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. USA. 93, 9505, 1996.
  • 20. FINNEY A.H., BLICK R.J., MURAKAMI K., ISHOHAMA A., STEVENS A.A.M. Role of the C-terminal domain of the alpha subunit of RNA polymerase in LuxRdependent transcriptional activation of the lux operon during quorum sensing. J. Bacteriol. 184, 4520, 2002.
  • 21. WISNIEWSKI-DYE F., DOWNIE J.A. Quorum sensing in Rhizobium. Anton van Leeuwenhoek. 81, 397, 2003.
  • 22. ZHANG L., MURPHY P.J., KERR A., TATE M.E. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature. 362, 446, 1993.
  • 23. WEI J.R., TSAI Y.-H., HORNG Y.T., SOO P.-C., HSIEH S.C., HSUEH P.-R., HORNG J.-T., WILLIAMS P., LAI H.-C. TnTIR, a mobilevTn3-familiy transposon carring spnIR quorum sensing unit. J. Bacteriol. 188, 1518, 2006.
  • 24. EBERHARD A., LONGIN T., WIDRIG C.A., STRANICK S.J. Synthesis of the lux gene autoinducer in Vibrio fischeri is positively autoregulated. Arch. Microbiol. 155, 294, 1991.
  • 25. HANZELKA B.L., GREENBERG E.P. Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis. J. Bacteriol. 178, 5291, 1996.
  • 26. VAL D.L., CRONAN J.E. In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases. J. Bacteriol. 180, 2644, 1998.
  • 27. HOANG T.T., SCHWEIZER H.P. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J. Bacteriol. 181, 5489, 1999.
  • 28. CZAJKOWSKI R., JAFRA S. Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim. Pol. 56, 1, 2006.
  • 29. HANZELKA B.L., PARSEK M.R., VAL D.L., DUNLAP P.V., CRONAN J.E., GREENBERG E.P. Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J. Bacteriol. 181, 5766, 1999.
  • 30. MILTON D.L., CHALKER V.J., KIRKE D., HARDMAN A., CÁMARA M., WILLIAMS P. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl) homoserine lactone nad N-hexanoylhomoserine lactone. J. Bacteriol. 183, 3537, 2001.
  • 31. CÁMARA M., WILLIAMS P., HARDMAN A. Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet. Infect. Dis. 2, 667, 2002.
  • 32. CROXATTO A., PRIDE J., HARDMAN A., WILLIAMS P., CÁMARA M., MILLTON D.L. A distinctive dual-channel quorum-sensing system operates in Vibrio anguillarum. Mol. Microbiol. 52, 1677, 2004.
  • 33. BURLAGE R.S., PALUMBO A.U., HEITZER A., SAYLER G. Bioluminescent reporter bacteria detect contaminants in soil samples. Appl. Biochem. Biotechnol. 45, 731, 1994.
  • 34. NEALSON K.H., PLATT T., HASTINGS J.W. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104, 313, 1970.
  • 35. SWARTZMAN E., SILVERMAN M., MEIGHEN E. A. The luxR gene product is a transcriptional activator of the lux promoter. J. Bacteriol. 174, 7490, 1992.
  • 36. ENGERBRECHT J., SILVERMAN M. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA. 81, 4154, 1984.
  • 37. BOYLAN M., GRAHAM A.F., MEIGHEN E.A. Functional identification of the fatty acid reductase components encoded in the luminescence operon of Vibrio fischeri. J. Bacteriol. 163, 1186, 1985.
  • 38. ZENNO S., SAIGO K. Identification of the genes encoding NAD(P)H-flavin oxidoreductases that are similar in sequence to Escherichia coli Fre in four species of luminous bacteria: Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi and Vibrio orientalis. J. Bacteriol. 176, 3544, 1994.
  • 39. EGLAND K.A., GREENBERG E.P. Quorum sensing in Vibrio fischeri: elements of the luxI promoter. Mol. Microbiol. 31, 1197, 1999.
  • 40. BOETTCHER K.J., RUBY E.G. Detection an quantification of Vibrio fischeri autoinducer from symbiotic squid light organs. J. Bacteriol. 177, 1053, 1995.
  • 41. SHADEL G.S., BALDWIN T.O. Identification of a distantly locatd regulatory element in the LuxCD gene required for negative autoregulation of the Vibrio fischeri LuxR gene. J. Biol. Chem. 267, 7690, 1992.
  • 42. MENTAG R., LUCKEVICH M., MORENCY M.-J., SEGUIN A. Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol. 23, 405, 2003.
  • 43. PASSADOR L., COOK J.M., GAMBELLO M.J., RUST L., IGLEWSKI B.H. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science. 260, 1127, 1993.
  • 44. PEARSON J.P., PASSADOR L., IGLEWSKI B.H., GREENBERG E.P. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA. 92, 1490, 1994.
  • 45. YOU Z., FUKUSHIMA J., ISHIWATA T., CHANG B., KURATA M., KUWAMOTO S., WILLIAMS P., OKUDA K. Purification and characterization of LasR as a DNA-binding protein. FEMS Microbiol. Lett. 142, 301, 1996.
  • 46. SEED P.C., PASSADOR L., IGLEWSKI B.H. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J. Bacteriol. 177, 654, 1995.
  • 47. OCHSNER U., KOCH A. K., FIECHTER A., REISER J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J. Bacteriol. 176, 2044, 1994.
  • 48. KÖHLER T., CURTY L.K., BARJA F., VAN DELDEN C., PECHERE J.C. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 182, 5990, 2000.
  • 49. NASSER W., BOUILLANT M.L., SALMOND G., REVERCHON S. Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two Nacyl- homoserine lactone signal molecules. Mol. Microbiol. 29, 1391, 1998.
  • 50. BECK VON BODMAN S., FARRAND S. K. Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acyl homoserine lactone autoinducer. J. Bacteriol. 177, 5000, 1995.
  • 51. BECK VON BODMAN S., MAJERCZAK D.R., COPLIN D.L. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc. Natl. Acad. Sci. USA. 95, 7687, 1998.
  • 52. NEWTON J.A., FRAY R.G. Integration of environmental and host-derived signals with quorum sensing during plantmicrobe interactions. Cellular Microbiol. 6, 213, 2004.
  • 53. VANNINI A., VOLPARI C., GARGOLGI C., MURAGLIA E., CORTESE R., DE FRANCESCO R., NEDDERMANN P., DI MARCO S. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J. 21, 4393, 2002.
  • 54. QIN Y.P., LUO Z.Q., SMYTH A.J., GAO P., VON BODMAN S.B., FARRAND S.K. Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. EMBO J. 19, 5212, 2000.
  • 55. WATNICK P., KOLTER R. Biofilm, city of microbes. J. Bacteriol. 182, 2675, 2000.
  • 56. COSTERTON J. W. Introduction to biofilm. Int. J. Antimicrobial. Agents. 11, 217, 1999.
  • 57. HUBER B., RIEDEL K., HENTZER M., HEYDORN A., GOTSCHLICH A., GIVSKOV M., MOLIN S., EBERL L. The cep quorum-sensing system of Brukholderia capacia H111 controls biofilm formation and swarming motility. Microbiol. 147, 2517, 2001.
  • 58. LABBATE M., ZHU H., THUNG L., BANDARA R., LARSEN M., WILLCOX M., GIVSKOV M., RICE S., KJELLEBERG S. Quorum sensing regulation of adhesion in Serratia marcescens MG1 is surface dependend. J. Bacteriol. 189, 2702, 2007.
  • 59. LYNCH N.J., SWIFT S., KIRKE D.F., KEEVIL C., DODD C.E. WILLIAMS P. The regulation of biofilm development by quorum-sensing in Aeromonas hydrophila. Eviron. Microbiol. 4, 18, 2002.
  • 60. STEIDLA A., ALLESEN-HOLM M., RIEDEL K., BERG G., GIVSKOV M., MOLIN S., EBERL L. Identification and characterization of an N-acylhomoserine lacton-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl. Environ. Microbiol. 68, 6371, 2002.
  • 61. CZACZYK K., MYSZKA K. Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Pol. J. Environ. Stud. 16, 799, 2007.
  • 62. MYSZKA K., CZACZYK K. Characterization of adhesive exopolysaccharide (EPS) produced by Pseudomonas aeruginosa under starvation conditions. Curr. Microbiol. 58, 541, 2009.
  • 63. TORRES P., MALAMUD F., RIGANO L., RUSSO D., MARANO M., CASTAGNANO A., ZORREQUIETA A., DOW J., VOJNOV A. Controlled synthesis of the DSF cellcell signal is required of biofilm formation and virulence in Xanthomonas campestris. Environ. Microbiol. 9, 2101,2007.
  • 64. MARSHALL K.C. Biofilm: an overview of bacterial adhesion activity and control at surface. ASM News. 58, 202, 1992.
  • 65. FRAY R.G. Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing. Ann. Bot. 89, 245, 2002.
  • 66. RASMUSSEN T.B., MANEFIELD M., ANDERSEN J.B., EBERL L., ANTHONI U., CHRISTOPHERSEN C., STEINBERG P., KJELLEBERG S., GIVSKOV M. How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiol. 146, 3237, 2000.
  • 67. MANEFIELD M., WELCH M., GIVSKOV M., SALMOND G. P. C., KJELLEBRG S. Halogenated furanones from red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol. Lett. 205, 131, 2001.
  • 68. TEPLITSKI M., ROBINSON J.B., BAUER W.D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activity and affect population density-dependent behaviours in associated bacteria. Mol. Plant Microbe Interact. 13, 637, 2000.
  • 69. JOINT I., TAIT K., CALLOW M.E., CALLOW J.A., MILTON D., WILLIAMS P., CAMARA M. Cell-to-cell communication across the prokaryote-eukaryote boundary. Science. 298, 1207, 2002.
  • 70. FRAY R.G., THROUP J.P., DAYKIN M., WALLACE A., WILLIAMS P., STEWART G.S.A.B., GRIERSON D. Plants genetically modified to produce N-acyl homoserine lactones communicate with bacteria. Nat. Biotechnol. 17, 1017, 1999.
  • 71. MARKETON M.M., GONZALEZ J.E. Identification of two quorum-sensing systems in Sinorhizobium meliloti. J. Bacteriol. 184, 3466, 2002.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9ad4216c-b02a-4dc7-8783-6091607acb98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.