PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 2 |

Tytuł artykułu

Aerobic and anaerobic respiration in profiles of Polesie Lubelskie peatlands

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soil respiration is a very important factor influencing carbon deposition in peat and reflecting the intensity of soil organic matter decomposition, root respiration, and the ease of transporting gases to the surface. Carbon dioxide release from three different peat soil profiles (0-80 cm) of the Polesie Lubelskie Region (Eastern Poland) was analyzed under laboratory conditions. Peat samples were incubated at 5, 10, and 20°C in aerobic and anaerobic environments, and their CO2-evolution was analyzed up to 14 days. The respiration activity was found to be in the range of 0.013-0.497 g CO2 kg-1 DW d-1. The respiratory quotient was estimated to be in the range of 0.51-1.51, and the difference in respiration rates over 10°C ranged between 4.15 and 8.72 in aerobic and from 1.15 to 6.53 in anaerobic conditions. A strong influence of temperature, depth, the degree of peat decomposition, pH, and nitrate content on respiration activity was found. Lack of oxygen at low temperature caused higher respiration activity than under aerobic conditions. These results should be taken into account when the management of Polish peatlands is considered in the context of climate and carbon storage, and physicochemical properties of soil in relation to soil respiration activity are considered.

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.219-229,fig.,ref.

Twórcy

  • Department of Biochemistry and Environmental Chemistry, John Paul II Catholic University of Lublin, Konstantynow 1I, 20-708 Lublin, Poland
  • Department of Biochemistry and Environmental Chemistry, John Paul II Catholic University of Lublin, Konstantynow 1I, 20-708 Lublin, Poland

Bibliografia

  • Aerts R. and Toet S., 1997. Nutritional controls on carbon dioxide and methane emission from Carex dominated peat soils. Soil Biol. Biochem., 29(11/12), 1683-1690.
  • Banach A.M., Banach K., Visser E.J.W., Stępniewska Z., Smits A.J.M., Roelofs J.G.M., and Lamers L.P.M., 2009. Effects of summer flooding on floodplain biogeochemistry in Poland; implications for increased flooding frequency. Biogeochem., 92, 247-262.
  • Bennicelli R.P., Szafranek-Nakonieczna A., Wolińska A., Stępniewska Z., and Bogudzińska M., 2009. Influence of pesticide (glyphosate) on dehydrogenase activity, pH, Eh and gases production in soil (laboratory conditions). Int. Agrophys., 23, 117-122.
  • Bowden R. D.,Davidson E., Savage K.,Arabia C., and Steudler P., 2004. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecol. Manag., 196, 43-56.
  • Brzezińska M., 2006. Biological activity and accompanying it processes in organic soils irrigated in treated urban sewage (in Polish). Acta Agrophys., 131(2), 1-176.
  • Canadell J., Jackson R.B., Ehleringer J.R., Mooney H.A., Sala O.E., and Schulze E.D., 1996. Maximum rooting depth of vegetation types at the global scale. Oceanologia, 108, 853-595.
  • Chapman S.J. and Thurlow M., 1998. Peat respiration at low temperatures. Soil Biol. Biochem., 30(8-9), 1013-1091.
  • Debusk W.F. and Reddy K.R., 2005. Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh. Biogeochem., 75, 217-240.
  • Dilly O., 2003. Regulation of the respiratory quotient of soil microbiota by availability of nutrients. FEMS Microbiol. Ecol., 43, 375-381.
  • Drake J.E., Oishib A.C., Giassona M.A., Orenb R., Johnsend K.H., and Finzi A.C., 2012. Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric (CO2) and N fertilization. Agric. For. Meteorol., 165, 43- 52.
  • Fierer N., Allen A.S., Schimel J.P., and Holden P.A., 2003. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob. Change Biol., 9, 1322-1332.
  • Frey S.D., Lee J., Melillo J.M., and Six J., 2013. The temperature response of soil microbial efficiency and its feedback to climate, Nature Clim. Change, 3, 395-398.
  • Gajda A.M. and Przewłoka B., 2012. Soil biological activity as affected by tillage intensity. Int. Agrophys., 26, 15-23.
  • Gajda A.M., Przewłoka B., and Gawryjołek K., 2013. Changes in soil quality associated with tillage system applied. Int. Agrophys., 27, 133-141.
  • Gershenson A., Bader N.E., and Cheng W., 2009. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glob. Change Biol., 15, 176-183.
  • Glatzel S., Basiliko N., and Moore T., 2004. Carbon dioxide and methane production potential of peats from natural, harvested and restored sites, eastern Québec, Canada. Wetlands, 24(2), 261-267.
  • Graf A., Weihermüller L., Huisman J.A., Herbst M., Bauer J., and Vereecken H., 2008. Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies. Biogeosciences, 5, 1175-1188.
  • HuangY., Jiao Y., ZongL., ZhengX., Sass R.L., and Fisher F.M., 2002. Quantitative dependence of methane emission on soil properties. Nutr. Cycl. Agroecosys., 64, 157-167.
  • Keller J.K. and Takagi K.K., 2013. Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil. Ecosphere 4(5): art. 54.
  • Kellman L., Beltrami C.H., and Risk C.D., 2007. Changes in seasonal soil respiration with pasture conversion to forest in Atlantic Canada. Biogeochem., 82, 101-109.
  • Kristensen E. and Holmer M., 2001. Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3 -, and SO4 -2), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. Geochem. Cosmochim. Ac., 65, 419-433.
  • Minkkinen K., Laine J., Shurpali N.J., Mäkiranta P., Alm J., and Penttilä T., 2007. Heterotrophic soil respiration in forestry-drained peatlands. Boreal Env. Res., 12, 115-126.
  • Prescott C.E., 2005. Decomposition and mineralization of nutrients from litter and humus. In: Nutrient acquisition by plants: an ecological perspective. Springer Berlin Heidelberg- New York.
  • Rietz D.N. and Haynes R.J., 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem., 35, 845-854.
  • Šantrùèková H., Kaštovská E., Kozlov D., Kurbatova J., Liveèková M., Shibistova O., Tatarinov F., and Lloyd J., 2010. Vertical and horizontal variation of carbon pools and fluxes in soil profile of wet southern taiga in European Russia. Boreal Env. Res., 15, 357-369.
  • Schneider T., Gerrits B., Gassmann R., Schmid E., Gessner M.O., Richter A., Battin T., Eberl L., and Riedel K., 2010. Proteome analysis of fungal and bacterial involvement in leaf litter decomposition. Proteomics, 10, 1819-1830.
  • Szafranek-Nakonieczna A. and Bennicelli R.P., 2010. Ability of peat soil to oxidize methane and effect of temperature and layer deposition. Polish J. Environ. Stud., 19(4), 805-810.
  • Tveit A., Schwacke R., Svenning M.M., and Urich T., 2012. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J., 7(2), 299-311.
  • Włodarczyk T., Stępniewski W., Brzezińska M., and Kotowska U., 2002. N2O emission and sorption in relation to soil dehydrogenase activity and redox potential. Int. Agrophysics, 16, 249-252.
  • Wojciechowski I. and Szczurowska A., 2002. Peat ecosystems (in Polish). In: Poleski National Park, Environmental (Ed. S. Radwan). Institute of Agrophysics PAS, Lublin, Poland.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9a68ce86-a247-40f5-ae04-41017c4101d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.