PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 74 |

Tytuł artykułu

Physiological and growth response of Quercus robur in Slovenia

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Pedunculate oak (Quercus robur L.) forests in Slovenia are experiencing widespread mortality. Changes in lowlands reflect in decline of complete forest complexes, high mortality, uneven stand structure and associated forest regeneration problems. Prediction of the present-tree response in disturbed forest ecosystems may significantly contribute to better guideline policies for the silvicultural and forest management practice in the changing environment in both stressed and stabile forest ecosystems. On pedunculate oak floodplain site two groups of vital and declining trees were selected according to the ICP methodology. During three consequent vegetation periods (2006, 2007 and 2008), ecophysiological response of trees in controlled conditions (maximal photosynthetic rates – Amax, water conditions) were recorded and compared with radial growth (tree ring width, pointer years). Growth was compared with meteorological data from closest meteorological stations to recognize and define tree response to changing growing conditions in all groups. Significant differences in light response (Amax) between declining and vital trees were observed as well as in water use efficiency (WUE) and in pre-dawn water potential (Ψpd). Beside the differences in tree-ring width, a significant difference in the year-to-year variability of tree-rings between both studied oak groups was confirmed. Vital oaks in floodplains responded positively to above average precipitation in May and June, while declining oaks with very narrow rings, usually consisting of only one row of vessels, responded negatively to above average temperature in March.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

74

Opis fizyczny

p.3-12,fig.,ref.

Twórcy

autor
  • Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia
  • Faculty of Forestry and Wood Technology, Mendel University, 61500 Brno, Czech Republic
autor
  • Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia

Bibliografia

  • 2009. R Development Core Team – R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing.
  • Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D.D., Hogg E.H., Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J.-H., Allard G., Running S.W., Semerci A., Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660–684.
  • Anonymous 2006. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE, ICP Forests, Hamburg.
  • Baillie M.G.L., Pilcher J.R. 1973. A simple crossdating program for tree-ring research. Tree-Ring Bulletin 33: 7–14.
  • Bobinac M. 2000. Stand structure and natural regeneration of common oak in the nature reserves Vratična and Smogva near Morovic. Glasnik za Šumske Pokuse 37: 295–310.
  • Bobinac M., Andrašev S. 2009. Effects of silvicultural measures in devitalized middle aged oak stand (Quercus robur L.) on chernozem in Vojvodina. Šumarski list 133: 513–526.
  • Brasier C.M. 1996. Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Annals of Forest Science 53: 347–358.
  • Cochard H., Breda N., Granier A. 1996. Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Annals of Forest Science 53: 197–206.
  • Cook E.R. 1985. Time series analysis approach to tree ring standardization. Dissertation, University of Arizona, Laboratory of Tree-Ring Research.
  • Cook E.R., Briffa K., Shiyatov S., Mazepa V. 1990. Tree-Ring Standardization and Growth-Trend Estimation. In: Methods of dendrochronology: applications in the environmental sciences. Cook E.R., Kairiukstis L.A. (eds.). Kluwer Academic Publishers, Dordrecht, pp. 104–162.
  • Cook E.R., Holmes R.L. 1999. Program ARSTAN – chronology development with statistical analysis (users manual for program ARSTAN). Laboratory of Tree-Ring Research, University of Arizona, no., 18 pp.
  • Čater M. 2003. Pedunculate oak (Quercus robur L.) crown defoliation – changes on permanent research plots. Ekologia – Bratislava 22: 430–443.
  • Čater M. 2011. Osmotic adaptation of Quercus robur L. under water stress in stands with different tree density – relation with groundwater table. Dendrobiology 65: 29–36.
  • Čater M. 2015. A 20-Year Overview of Quercus robur L. Mortality and Crown Conditions in Slovenia. doi:10.3390/f6030581, Forests 6: 581–593.
  • Čater M., Batič F. 2006. Groundwater and light conditions as factors in the survival of pedunculate oak (Quercus robur L.) seedlings. European Journal of Forest Research 125: 419–426.
  • Čater M., Bobinac M., Levanič T., Simončič P. 2008. Water status, nutrients and radial increment of pedunculate oak (Quercus robur L.) in northern Serbia and comparison with selected sites in Slovenia. Zbornik gozdarstva in lesarstva 87: 135–144.
  • Čater M., Levanič T. 2004. Increment and environmental conditions in two Slovenian pedunculate-oak forest complexes. Ekologia (Bratislava) 23: 353–365.
  • Čavlović J., Božić M., Teslak K. 2009. Rotation and density in planning the anagement of Pedunculate oak forests under conditions of a disturbed stand structure. In: Forests of pedunculate oak in changed site and management conditions, Zagreb. Croatian Acedemy of Science and Arts, pp. 23–37.
  • Donaubauer E. 1995. Recent Oak Decline and Possible Pathogens. In: IUFRO-95 Papers and Abstracts, Tampere, Finland, 6–12 August 1995, IUFRO XX World Congress.
  • Eckstein D., Bauch J. 1969. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88: 230–250.
  • Führer E.G. 1992. Der Zusammenhang zwischen der Dürre und der Erkrankung der Traubeneichenbestände in Ungarn. Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch 111: 129–136.
  • Gemmel P., Nilsson U., Welander T. 1996. Development of oak and beech seedlings planted under varying shelterwood densities and with different site preparation methods in southern Sweden. New Forests 12: 141–161.
  • Haavik L.J., Stephen F.M., Fierke M.K., Salisbury V.B., Leavitt S.W., Billings S.A. 2008. Dendrochronological parameters of northern red oak (Quercus rubra L. (Fagaceae)) infested with red oak borer (Enaphalodes rufulus (Haldeman) (Coleoptera: Cerambycidae). Forest Ecology and Management 255: 1501–1509.
  • Hämmerli F., Stadler B. 1989. Eichenschäden, Eine Übersicht zur Situation in Europa und in der Schweiz. Forstwesen 104: 357–374.
  • Harapin M., Androić M. 1996. Sušenje i zaštita šuma hrasta lužnjaka. In: Hrast lužnjak (Quercus robur L.) u Hrvatskoj. Klepac D. (ed.). Hrvatska akademija znanosti i umjetnosti, Zagreb, Vinkovci.
  • Hartmann G., Blank R., Lewark S. 1989. Eichensterben in Norddeutschland: Verbreitung, Schadbilder, mögliche Ursachen. Forst und Holz 44: 475–487.
  • IPCC 2007. Climate Change 2007: The physical science basis. In: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (eds.). Cambridge University Press, Cambridge.
  • Jenkins M.A., Pallardy S.G. 1995. The influence of drought on red oak group species growth and mortality in the Missouri Ozarks. Canadian Journal of Forest Research 25: 1119–1127.
  • Jung T., Blaschke H., Oßwald W. 2000. Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathology 49: 706–718.
  • Kramer H., Gussone H.-A., Schober R. 1988. Waldwachstumslehre: Ökologische und anthropogene Einflüsse auf das Wachstum des Waldes, seine Massen-und Wertleistung und die Bestandessicherheit Verlag Paul Parey, Berlin.
  • Larcher W. 2003. Physiological plant ecology: Ecophysiology and Stress Physiology of Functional Groups. Springer, Berlin.
  • Levanič T. 1993. Effects of hydromelioration on diameter growth and increment of black alder, ash and oak in Slovene Prekmurje. Zbornik gozdarstva in lesarstva 42: 7–65.
  • Levanič T. 2007. ATRICS – a new system for image acquisition in dendrochronology. Tree Ring Research 63: 117–122.
  • Levanič T., Čater M., McDowell N.G. 2011. Associations between growth, wood anatomy, carbon isotope discrimination and mortality in a Quercus robur forest. Tree Physiology 31: 298–308.
  • Limousin J.M., Longepierre D., Huc R., Rambal S. 2010. Change in hydraulic traits of Mediterranean Quercus ilex subjected to long-term throughfall exclusion. Tree Physiology 30: 1026–1036.
  • Manojlović P. 1926. Sadašnje stanje hrastovih šuma u Slavoniji. In: Pola stolječa šumarstva 1876–1926. Ugrenović A. (ed.). Zagreb, pp. 372–385.
  • Marcu G. 1987. Ursachen des Eichensterbens in Rumänien und Gegenmaßnahmen. Allgemeine Forstzeitung 3: 53–54.
  • Matić S. 1996. Uzgojni radovi na obnovi i njezi sastojina hrasta lužnjaka. In: Hrast lužnjak (Quercus robur L.) u Hrvatskoj. Klepac D. (ed.). Hrvatska akademija znanosti i umjetnosti, Vinkovci – Zagreb.
  • Matić S. 2009. Managing forests of pedunculate oak (Quercus robur L.) in changed site conditions. In: Forests of pedunculate oak in changed site and management conditions Zagreb, Croatia, 24–25 September 2008. Croatian Acedemy of Science and Arts, Croatia, pp. 1–22.
  • McDowell N.G., Adams H.D., Bailey J.D., Hess M., Kolb T.E. 2006. Homeostatic maintenance of Ponderosa pine gas exchange in response to stand density changes. Ecological Application 16: 1164–1182.
  • McDowell N.G., Pockman W.T., Craig A.D., Breshears D.D., Cobb N., Kolb T., Plaut J., Sperry J., West A., Williams D.G., Yepez E.A. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought. New Phytologist 178: 719–739.
  • McDowell N.G., Sevanto S. 2010. The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytologist 186: 264–266.
  • McKee T.B., Doesken N.J., Kliest J. 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. American Meteorological Society, Boston, pp. 179–184.
  • Mitchell T.D., Carter T.R., Jones P.D., Hulme M., New M. 2004. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre for Climate Change Research Working Paper 55: 25.
  • Näveke S., Meyer F.H. 1990. Feinwurzelsysteme unterschiedlich geschädigter Eichen im Lappwald. Allgemeine Forstzeitschrift 45: 382–384.
  • Picon C., Guehl J.M., Aussenac G. 1996. Growth dynamics, transpiration and water-use efficiency in Quercus robur plants submitted to elevated CO2 and drought. Annales des Sciences Forestieres 53: 431–446.
  • Prpić B., Anić I. 2000. The role of climate and hydraulic operations in the stability of the pedunculate oak (Quercus robur L.) stands in Croatia. Glasnik za šumske pokuse 37: 229–239.
  • Rösel K., Reuther M. 1995. Differentialdiagnostik der Schäden an Eichen in den Donauländern. Schlussbericht. GSF Forschungszentrum für Umwelt und Gesundheit.
  • Rubstov V.V. 1996. Influence of repeated defoliations by insects on wood increment in common oak (Quercus robur L.). Annales des Sciences Forestieres 53: 407–412.
  • Schweingruber F.H., Eckstein D., Serre-Bachet F., Bräker O.U. 1990. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8: 9–38.
  • Stokes M.A., Smiley T.L. 1996. An Introduction to Tree-Ring Dating. The University of Arizona Press, Tucson.
  • Thomas F.M., Blank R., Hartmann G. 2002. Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology 32: 277–307.
  • Thomas F.M., Hartmann G. 1996. Soil and tree water relations in mature oak stands of northern Germany differing in the degree of decline. Annales des Sciences Forestieres 53: 697–720.
  • Triboulot M.B., Fauveau M.L., Breda N., Label S., Dreyer E. 1996. Stomatal conductance and xylem-sap abscisic acid (ABA) in adult oak trees during a gradually imposed drought. Annales des Sciences Forestieres 53: 207–220.
  • Tyree M.T., Cochard H. 1996. Summer and winter embolism in oak: impact on water relations. Annales des Sciences Forestieres 53: 173–180.
  • Vivin S., Guehl J.M., Clement A., Aussenac G. 1996. The effects of elevated CO2 and water stress on whole plant CO2 exchange, carbon allocation and osmoregulation in oak seedlings. Annales des Sciences Forestieres 53: 447–459.
  • Wagner P.A., Dreyer E. 1997. Interactive effects of waterlogging and irradiance on the photosynthetic performance of seedlings from three oak species displaying different sensitivities (Quercus robur, Q. petraea and Q. rubra). Annales des Sciences Forestieres 54: 409–429.
  • Wraber M. 1951. Gozdna vegetacijska slika in gozdnogojitveni problemi Prekmurja. (In Slovene language). Gozdarski Vestnik 23: 1–52.
  • Wyckoff P.H., Bowers R. 2010. Response of the prairie–forest border to climate change: impacts of increasing drought may be mitigated by increasing CO2. Journal of Ecology 98: 197–208.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9a59cbd6-3dc9-4aa0-be6b-71f871f33a11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.