PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 6 |

Tytuł artykułu

Molasses wastewater treatment by microbial fuel cell with MnO2-modified cathode

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
An experimental system consisting of a dual chamber microbial fuel cell was constructed using simulated molasses wastewater as the inoculum and anode substrate, carbon cloth or carbon felt as the cathode base, and MnO2 as the oxygen reduction catalyst for cathode. By testing and analyzing the output voltage, power density, and COD removal rate of the microbial fuel cell, the effects of the MnO2-modified cathode on power generation and wastewater treatment of microbial fuel cells were studied. The steady output power density of the microbial fuel cell with carbon cloth cathode were 6.8 and 10.33 mW/m2, respectively, before and after modification by MnO2, that is, the power density of the microbial fuel cell with MnO2-modified carbon cloth was increased by 51.91% more than that of unmodified carbon cloth. The stable output power density of the microbial fuel cells with carbon felt were 3.6 and 31.37 mW/m2, respectively, before and after modification by MnO2, that is, the power density of the microbial fuel cell with MnO2-modified carbon felt was increased by 771.4% more than that of unmodified carbon felt. The results show that the electricity generation capacity and the wastewater treatment effect of the microbial fuel cell using molasses wastewater as the anode substrate can be improved significantly by using inexpensive MnO2 as the cathode modifier.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

6

Opis fizyczny

p.2359-2356,fig.

Twórcy

autor
  • Shenyang University of Chemical Technology, College of Information Engineering, Shenyang, China
autor
  • Shenyang University of Chemical Technology, College of Environment and Safety Engineering, Shenyang, China
  • Liaoning ERay Environmental Technology Engineering Co. Ltd, Fushun, China
autor
  • Shenyang University of Chemical Technology, College of Information Engineering, Shenyang, China
  • University of Chemical Technology and Metallurgy, Sofia, Bulgaria
autor
  • Shenyang University of Chemical Technology, College of Environment and Safety Engineering, Shenyang, China

Bibliografia

  • 1. LIU W., LIU Y., LIU S.X. Jiang. The progress of research on treating molasses wastewater and resources. China Resources Comprehensive Utilization, 27 (7), 39, 2009 [In Chinese].
  • 2. TSIOPTSIAS C., PETRIDIS D., ATHANASAKIS N., LEMONIDIS I., DELIGIANNIS A., SAMARAS P. Posttreatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis. Journal of Environmental Management, 164, 104, 2015.
  • 3. PANDEY B.K., MISHRA V., AGRAWAL S. Production of bio-electricity during wastewater treatment using a single chamber microbial fuel cell. International Journal of Engineering, Science and Technology, 3 (4), 42, 2011.
  • 4. HUGGINS T., FALLGREN P.H., JIN S., REN Z.J. Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater, J Microbial Biochem Technol, S6, 1, 2013.
  • 5. OH S.T., KIM J.R., PREMIER G.C., LEE T.H., KIM C., SLOAN W.T. Premier sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv, 28 (6), 871, 2010.
  • 6. NWOKOCHA J.V., NWOKOCHA N.J., NNANNA L.A. The Microbial Fuel Cell: The Solution to the Global Energy and Environmental Crises. International Journal of Academic Research in Progressive Education and Development, 1 (1), 363, 2012.
  • 7. ZHOU M.H., CHI M.L., LUO J M, HUANHUAN HE, JIN T. An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196 (10), 4427, 2011.
  • 8. ZHOU Y., LIU Z., HOU J., YANG S., LI Y., QIU W. Microbial fuel cell anode modified by chemical oxidation (in China). CIESC Journal, 66 (3), 1171, 2015.
  • 9. FU J., WANG X., HAI R, XIANG L., LIU R., LI Y. Progress of research on the practical application of microbial fuel cells. Technology of Water Treatment, 41 (4), 7, 2015 [In China].
  • 10. LOGAN B.E., REGAN J.M. Microbial fuel cells – challenges and applications. Environ. Sci. Technol., 40 (17), 5172, 2006.
  • 11. PANT D., BOGAERT G.V., DIELS L., VANBROEKHOVEN K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol., 101 (6), 1533, 2010.
  • 12. GIL G.C., CHANG I.S., KIM B.H., KIM M., JANG J.K., PARK H.S., KIM H.J. Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens. Bioelectron., 18 (4), 327, 2003.
  • 13. DU Z., LI H., GU T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv., 25 (5), 464, 2007.
  • 14. OH S.E., LOGAN B.E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol., 70 (2), 162, 2006.
  • 15. CHEN Q Y, WANG Y H. Cathodic function of microbial fuel cells: A review. Chemical Industry and Engineering Progress, 32 (10), 2352, 2013 [In China].
  • 16. OH S., MIN B., LOGAN B.E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol., 38 (18), 4900, 2004.
  • 17. ZHANG L.X., LIU C., ZHUANG L., LI W., ZHUOU S., ZHANG J. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosensors and Bioelectronics. 24 (9), 2825, 2009.
  • 18. ZHAO F, HARNISCH F, SCHOLZ F. Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications, 7, 1405, 2005.
  • 19. YUAN H., DENG L., HANG H., NORIYUKI K., CHEN Y. Municipal solidwaste (MSW) leachate treatment using MnO2-catalyzed microbial fuel cells. ACTA Energiae Solaris SINICA. 35 (9), 1715, 2014 [In Chinese].
  • 20. LU N., ZHOU B., DENG L., ZHOU S., NI J. Starch processing wastewater Treatment using a continuous microbial fuel cell with MnO2 cathodic catalyst. Journal of Basic Science and Engineering. 17, 65, 2009 [In Chinese].
  • 21. LIU S., CHEN L., HUANG M., ZHENG Y. Electricity generation characteristics of two MFCs using carbon felt and carbon cloth as biocathode materials. Chinese Journal of Environmental Engineering. 8 (10), 4540, 2014 [In Chinese].
  • 22. YANG F., LI Z., XIAO B. Analysis of internal resistance and its influencing factors of MFC. Microbiology China, 38 (7), 1098, 2011 [In Chinese].
  • 23. SHI H., LI D., LIU Y., CAI L., ZHANG L. Internal resistance and capacitor of microbial fuel cells during start-up period. Journal of East China University of Science and Technology (Natural Science Edition), 38 (2), 186, 2014 [In Chinese].
  • 24. LIANG P., FAN Z. Composition and measurement of the apparent internal resistance of microbial fuel cell. Environmental Science, 28 (8), 1894, 2007 [In Chinese].
  • 25. MO Z., HU L., ZHU X. On-line measurement for a general internal-resistance of fuel cell stacks. Chinese Journal of Power Sources, 29 (2), 95, 2005 [In Chinese].
  • 26. APOLLO S., ONYONGO M.S., OCHIENG A. UV/H2O2/TiO2/Zeolite Hybrid System for Treatment of Molasses Wastewater. Iran. J. Chem. Chem. Eng., 33 (2), 107, 2014.
  • 27. PENA M., COCA M., GONZALEZ G., RIOJA R., GARCIA M.T. Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere, 51 (9), 893, 2003.
  • 28. SIRIANUNTAPIBOON S., PHOTHILANGKA P, OHMOMO S. Decolorization of molasses wastewater by a strain No. BP103 of acetogenic bacteria. Bioresource Technology, 92 (1), 31, 2004.
  • 29. ZHANG B.G., ZHAO H.Z., ZHOU S.G., SHI C.H., WANG C., NI J.R. A novel EGSB–MFC–BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresource Technology, 100 (23), 5687, 2009.
  • 30. GAO J.W., HE T.T., CHENG X., FENG L., ZHANG L.Q. Performance of the combined EGSB-MBR reactor treating fermentation wastewater. China Environmental Science, 35 (5), 1416, 2015 [In Chinese].

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-992b0249-0c7e-4e2d-bd3d-f806a11f3861
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.