PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 85 | 3 |

Tytuł artykułu

EGTA, a calcium chelator, affects cell cycle and increases DNA methylation in root tips of Triticum aestivum L.

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, when germinated Triticum aestivum L. seeds were treated with 0, 2, 4 and 6 mM ethyl glycol tetraacetic acid (EGTA), root growth was suppressed and the mitotic index decreased. These inhibitory effects were positively correlated with EGTA concentration. RT-PCR analysis revealed that the expression of several gene markers related to the G1/S transition of the cell cycle were significantly downregulated. Confocal microscopy of Fluo-3/AM-stained roots showed chelation of nearly all of the Ca2+ within the root meristematic regions. Both random amplified polymorphic DNA (RAPD) and coupled restriction enzyme digestion-random amplification (CRED-RA) techniques showed significant increases in the levels of genomic DNA polymorphisms and degree of DNA methylation. The study provides information concerning the impact of Ca²+) chelator, EGTA, on the growth, expression of cell cycle transition marker genes, and changes in DNA structure and methylation in the wheat roots.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

85

Numer

3

Opis fizyczny

Article 3502 [14p.], fig.,ref.

Twórcy

autor
  • College of Life Sciences, Capital Normal University, No. 105, Xi San Huan Bei Lu, Beijing 100048, China
autor
  • College of Life Sciences, Capital Normal University, No. 105, Xi San Huan Bei Lu, Beijing 100048, China
autor
  • College of Life Sciences, Capital Normal University, No. 105, Xi San Huan Bei Lu, Beijing 100048, China
autor
  • Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
autor
  • College of Life Sciences, Capital Normal University, No. 105, Xi San Huan Bei Lu, Beijing 100048, China

Bibliografia

  • 1. Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–1677. http://dx.doi.org/10.1126/science.274.5293.1672
  • 2. Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol. 2013;23:345–356. http://dx.doi.org/10.1016/j.tcb.2013.03.002
  • 3. Pena LB, Barcia RA, Azpilicueta CE, Méndez AAE, Gallego SM. Oxidative post translational modifications of proteins related to cell cycle are involved in cadmium toxicity in wheat seedlings. Plant Sci. 2012;196:1–7. http://dx.doi.org/10.1016/j.plantsci.2012.07.008
  • 4. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81:323–330. http://dx.doi.org/10.1016/0092-8674(95)90385-2
  • 5. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25:5220–5227. http://dx.doi.org/10.1038/sj.onc.1209615
  • 6. Iyer NG, Xian J, Chin SF, Bannister AJ, Daigo Y, Aparicio S, et al. p300 is required for orderly G1/S transition in human cancer cells. Oncogene. 2007;26:21–29. http://dx.doi.org/10.1038/sj.onc.1209771
  • 7. Bell SD, Botchan MR. The minichromosome maintenance replicative helicase. Cold Spring Harb Perspect Biol. 2013;5:a012807. http://dx.doi.org/10.1101/cshperspect.a012807
  • 8. Todorov IT, Attaran A, Kearsey SE. BM28, a human member of the Mcm2-3–5 family, is displaced from chromatin during DNA replication. J Cell Biol. 1995;129:1433–1445. http://dx.doi.org/10.1083/jcb.129.6.1433
  • 9. Dimitrova DS, Todorov IT, Melendy T, Gilbert DM. Mcm2, but not Rpa, is a component of the mammalian early G1-phase prereplication complex. J Cell Biol. 1999;146:709–722. http://dx.doi.org/10.1083/jcb.146.4.709
  • 10. Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot. 2011;107:1127–1140. http://dx.doi.org/10.1093/aob/mcq243
  • 11. Reichard P. Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem. 1988;57:349–374. http://dx.doi.org/10.1146/annurev.bi.57.070188.002025
  • 12. Herrick J, Sclavi B. Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol. 2007;63:22–34. http://dx.doi.org/10.1111/j.1365-2958.2006.05493.x
  • 13. Hepler PK. Calcium: a central regulator of plant growth and development. Plant Cell. 2005;17:2142–2155. http://dx.doi.org/10.1105/tpc.105.032508
  • 14. Galon Y, Finkler A, Fromm H. Calcium-regulated transcription in plants. Mol Plant. 2010;3:653–669. http://dx.doi.org/10.1093/mp/ssq019
  • 15. Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Iida H. Plant mechanosensing and Ca2+ transport. Trends Plant Sci. 2013;18:227–233. http://dx.doi.org/10.1016/j.tplants.2012.12.002
  • 16. Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol. 1996;6:427–437. http://dx.doi.org/10.1016/S0960-9822(02)00510-9
  • 17. Simon EW. The symptoms of calcium deficiency in plants. New Phytol. 1978;80:1–15. http://dx.doi.org/10.1111/j.1469-8137.1978.tb02259.x
  • 18. Chao L, Bofu P, Weiqian C, Yun L, Hao H, Liang C, et al. Influences of calcium deficiency and cerium on growth of spinach plants. Biol Trace Elem Res. 2008;121:266–275. http://dx.doi.org/10.1007/s12011-007-8054-y
  • 19. Legocka J, Sobieszczuk-Nowicka E. Calcium variously mediates the effect of cytokinin on chlorophyll and LHCPII accumulation during greening in barley leaves and cucumber cotyledons. Acta Biol Crac Ser Bot. 2014;56:27–34. http://dx.doi.org/10.2478/abcsb-2014-0017
  • 20. Chuang EY, Lin KJ, Su FY, Chen HL, Maiti B, Ho YC, et al. Calcium depletion-mediated protease inhibition and apical-junctional-complex disassembly via an EGTA-conjugated carrier for oral insulin delivery. J Control Release. 2013;169:296–305. http://dx.doi.org/10.1016/j.jconrel.2012.11.011
  • 21. Ni XL, Zhang FX. PI3K is involved in nucleolar structure and function on root-tip meristematic cells of Triticum aestivum L. Acta Histochem. 2014;116:838–843. http://dx.doi.org/10.1016/j.acthis.2014.02.004
  • 22. Li SP, Xie WL, Cai HH, Cai JY, Yang PH. Hydroxyl radical scavenging mechanism of human erythrocytes by quercetin–germanium (IV) complex. Eur J Pharm Sci. 2012;47:28–34. http://dx.doi.org/10.1016/j.ejps.2012.04.019
  • 23. Wang M, Ruan Y, Chen Q, Li S, Wang Q, Cai J. Curcumin induced HepG2 cell apoptosis-associated mitochondrial membrane potential and intracellular free Ca2+ concentration. Eur J Pharm Sci. 2011;650:41–47. http://dx.doi.org/10.1016/j.ejphar.2010.09.049
  • 24. Fadoul HE, El Siddig MA, El Hussein AA. Assessment of genetic diversity among Sudanese wheat cultivars using RAPD markers. International Journal of Current Science. 2013;6:51–57.
  • 25. Azimi A, Shahriari F, Fotovat A, Qale RK, Agje KH. Investigation of DNA changes in wheat (Triticum aestivum L.) induced by cadmium using random amplified polymorphic DNA (RAPD) analysis. Afr J Biotechnol. 2013;12:1921–1929. http://dx.doi.org/10.5897/AJB12.2836
  • 26. Ahmed MF, Iqbal M, Masood MS, Rabbani MA, Munir M. Assessment of genetic diversity among Pakistani wheat (Triticum aestivum L.) advanced breeding lines using RAPD and SDS-PAGE. Electronic Journal of Biotechnology. 2010;13:1–2. http://dx.doi.org/10.2225/vol13-issue3-fulltext-2
  • 27. Liu ZQ, Pei Y, Pu ZJ. Relationship between hybrid performance and genetic diversity based on RAPD markers in wheat Triticum aestivum L. Plant Breed. 1999;118:119–123. http://dx.doi.org/10.1046/j.1439-0523.1999.118002119.x
  • 28. Demirkiran A, Marakli S, Temel A, Gozukirmizi N. Genetic and epigenetic effects of salinity on in vitro growth of barley. Genet Mol Biol. 2013;36:566–570. http://dx.doi.org/10.1590/S1415-47572013000400016
  • 29. Ercan FS. Use of random amplified polymorphic DNA (RAPD) to detect DNA damage induced by Prangos ferulacea (Umbelliferae) essential oil against the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Arch Biol Sci. 2015;67:235–239. http://dx.doi.org/10.2298/ABS140903029E
  • 30. Yang C, Zhang M, Niu W, Yang R, Zhang Y, Qiu Z, et al. Analysis of DNA methylation in various swine tissue. PLoS One. 2011;6:e16229. http://dx.doi.org/10.1371/journal.pone.0016229
  • 31. Sáez-Laguna E, Guevara MÁ, Díaz LM, Sánchez-Gómez D, Collada C, Aranda I, et al. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS One. 2014;9:e103145. http://dx.doi.org/10.1371/journal.pone.0103145
  • 32. Portis E, Acquadro A, Comino C, Lanteri S. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci. 2004;166:169–178. http://dx.doi.org/10.1016/j.plantsci.2003.09.004
  • 33. Lu Y, Rong T, Cao M. Analysis of DNA methylation in different maize tissues. J Genet Genomics. 2008;35:41–48. http://dx.doi.org/10.1016/S1673-8527(08)60006-5
  • 34. de Veylder L, Beeckman T, Inzé D. The ins and outs of the plant cell cycle. Nat Rev Mol Cell Biol. 2007;8:655–665. http://dx.doi.org/10.1038/nrm2227
  • 35. Boynton AL, Whitfield JF. Stimulation of DNA synthesis in calcium-deprived T51B liver cells by the tumor promoters phenobarbital, saccharin, and 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1980;40:4541–4545.
  • 36. Whitfield JF, Boynton AL, MacManus JP, Sikorska M, Tsang BK. The regulation of cell proliferation by calcium and cyclic AMP. Mol Cell Biochem. 1979;27:155–179. http://dx.doi.org/10.1007/BF00215364
  • 37. Cheetham BF. An inhibitor of polyamine synthesis arrests cells at an earlier stage of G1 than does calcium deprivation. Mol Cell Biol. 1983;3:480–483. http://dx.doi.org/10.1128/MCB.3.3.480
  • 38. Tani D, Monteilh-Zoller MK, Fleig A, Penner R. Cell cycle-dependent regulation of store-operated ICRAC and Mg2+-nucleotide-regulated MagNuM (TRPM7) currents. Cell Calcium. 2007;41:249–260. http://dx.doi.org/10.1016/j.ceca.2006.07.004
  • 39. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18:6531–6535. http://dx.doi.org/10.1093/nar/18.22.6531
  • 40. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990;18:7213–7218. http://dx.doi.org/10.1093/nar/18.24.7213
  • 41. Atienzar FA, Conradi M, Evenden AJ, Jha AN, Depledge MH. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[α] pyrene. Environ Toxicol Chem. 1999;18:2275–2282. http://dx.doi.org/10.1002/etc.5620181023
  • 42. Cifci EA, Yagdi K. Study of genetic diversity in wheat (Triticum aestivum) varieties using random amplified polymorphic DNA (RAPD) analysis. Turkish Journal of Field Crops. 2012;17:91–95.
  • 43. Freitas LB, Jerusalinsky L, Bonatto SL, Salzano FM. Extreme homogeneity among Brazilian wheat genotypes determined by RAPD markers. Pesqui Agropecu Bras. 2000;35;2255–2260. http://dx.doi.org/10.1590/S0100-204X2000001100018
  • 44. Spielmeyer W, Sharp PJ, Lagudah ES. Identification and validation of markers linked to broad-spectrum stem rust resistance gene in wheat (Triticum aestivum L.). Crop Sci. 2003;43:333–336. http://dx.doi.org/10.2135/cropsci2003.3330
  • 45. Bai G, Guo P, Kolb FL. Genetic relationships among head blight resistant cultivars of wheat assessed on the basis of molecular markers. Crop Sci. 2003;43;498–507. http://dx.doi.org/10.2135/cropsci2003.4980
  • 46. Rahman M, Zafar Y. Genotyping of a new strain of lentil (Lens culinaris Medik.) by DNA fingerprinting. Pak J Bot. 2001;33:423–428.
  • 47. Liu S, Anderson JA. Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci. 2003;43:760–766. http://dx.doi.org/10.2135/cropsci2003.7600
  • 48. Zhou L, Li J, Lin X, Al-Rasheid KAS. Use of RAPD to detect DNA damage induced by nitrofurazone in marine ciliate, Euplotes vannus (Protozoa, Ciliophora). Aquat Toxicol. 2011;103:225–232. http://dx.doi.org/10.1016/j.aquatox.2011.03.002
  • 49. Cai Q, Guy CL, Moore GA. Detection of cytosine methylation and mapping of a gene influencing cytosine methylation in the genome of Citrus. Genome. 1996;39:235–242. http://dx.doi.org/10.1139/g96-032
  • 50. Tani E, Polidoros AN, Nianiou-Obeidat I, Tsaftaris AS. DNA methylation patterns are differently affected by planting density in maize inbreds and their hybrids. Maydica. 2005;50:19–23.
  • 51. Sano T, Higaki T, Handa K, Kadota Y, Kuchitsu K, Hasezawa S, et al. Calcium ions are involved in the delay of plant cell cycle progression by abiotic stresses. FEBS Lett. 2006;580:597–602. http://dx.doi.org/10.1016/j.febslet.2005.12.074
  • 52. Atienzar FA, Cheung VV, Jha AN, Depledge MH. Fitness parameters and DNA effects are sensitive indicators of copper-induced toxicity in Daphnia magna. Toxicol Sci. 2001;59:241–250. http://dx.doi.org/10.1093/toxsci/59.2.241
  • 53. Atienzar FA, Venier P, Jha AN, Depledge MH. Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutation Research / Genetic Toxicology and Environmental Mutagenesis. 2002;521:151–163. http://dx.doi.org/10.1016/S1383-5718(02)00216-4
  • 54. Atienzar FA, Billinghurst Z, Depledge MH. 4-n-Nonylphenol and 17-β estradiol may induce common DNA effects in developing barnacle larvae. Environ Pollut. 2002;120:735–738. http://dx.doi.org/10.1016/S0269-7491(02)00184-7
  • 55. Atienzar FA, Jha AN. The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutation Research / Reviews in Mutation Research. 2006;613:76–102. http://dx.doi.org/10.1016/j.mrrev.2006.06.001

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-98e6197d-5c9f-4f1a-9cc9-6d696275b280
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.